IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i15p3882-d391793.html
   My bibliography  Save this article

Physicochemical Composition Variability and Hydraulic Conditions in a Geothermal Borehole—The Latest Study in Podhale Basin, Poland

Author

Listed:
  • Agnieszka Operacz

    (Department of Sanitary Engineering and Water Management, Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Krakow, Mickiweicza 21 Av., 31-120 Kraków, Poland)

  • Bogusław Bielec

    (Mineral and Energy Economy Research Institute of the Polish Academy of Sciences, Wybickiego 7A str., 31-261 Kraków, Poland)

  • Barbara Tomaszewska

    (Department of Fossil Fuels, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Kraków, Poland)

  • Michał Kaczmarczyk

    (Department of Fossil Fuels, Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Mickiewicza 30 Av., 30-059 Kraków, Poland)

Abstract

In deep geothermal boreholes, an effect of temperature (so-called thermal lift) is observed, which results in the volumetric expansion of the fluid extracted. This process results in increased wellhead pressure values being recorded; in the absence of an appropriate correction, hydraulic properties of the reservoir layer cannot be properly determined. As an example of this effect, the Chochołów PIG-1 (CH PIG-1) geothermal borehole situated in Podhale Basin in Poland was used. Hydrodynamic tests including two pumping phases were carried out in the well in order to establish the basic hydraulic properties related to the determination of its operational resources (maximum water extraction value–capacity) and permissible groundwater level. Particular attention was paid to the thermal lift effect in the borehole. The conductivity, which depends on the pumping level, could be two to three times higher with temperature correction than results without any correction. The goal was to analyse the variability of the observed physiochemical properties of the exploited geothermal waters and to determine the correlation between the properties analysed and the temperature of the geothermal water. For the relationship between temperature and the observed pressure at the wellhead, the value of the correlation coefficient was negative (a negative linear relationship was determined), which means that as the temperature increases, the wellhead pressure decreases. The hydrodynamic tests carried out in the CH PIG-1 borehole and the analysis of variability of selected ions and parameters in exploited water were necessary to assess the possibility of increasing the efficiency (Q) of the CH PIG-1 borehole and to determine the water quality and its natural variability. Such information is crucial for the functioning of the recreational complex based on the use of geothermal water. A study of the phenomena affecting the exploitation of hot water from deep boreholes enables their effective exploitation and the use of resources in accordance with the expectations of investors.

Suggested Citation

  • Agnieszka Operacz & Bogusław Bielec & Barbara Tomaszewska & Michał Kaczmarczyk, 2020. "Physicochemical Composition Variability and Hydraulic Conditions in a Geothermal Borehole—The Latest Study in Podhale Basin, Poland," Energies, MDPI, vol. 13(15), pages 1-18, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3882-:d:391793
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/15/3882/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/15/3882/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michał Kaczmarczyk & Anna Sowiżdżał & Barbara Tomaszewska, 2020. "Energetic and Environmental Aspects of Individual Heat Generation for Sustainable Development at a Local Scale—A Case Study from Poland," Energies, MDPI, vol. 13(2), pages 1-16, January.
    2. Frank, Alejandro Germán & Gerstlberger, Wolfgang & Paslauski, Carolline Amaral & Lerman, Laura Visintainer & Ayala, Néstor Fabián, 2018. "The contribution of innovation policy criteria to the development of local renewable energy systems," Energy Policy, Elsevier, vol. 115(C), pages 353-365.
    3. Huculak, Maciej & Jarczewski, Wojciech & Dej, Magdalena, 2015. "Economic aspects of the use of deep geothermal heat in district heating in Poland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 29-40.
    4. Aliyu, Musa D. & Chen, Hua-Peng, 2017. "Sensitivity analysis of deep geothermal reservoir: Effect of reservoir parameters on production temperature," Energy, Elsevier, vol. 129(C), pages 101-113.
    5. Leszek Pająk & Barbara Tomaszewska & Wiesław Bujakowski & Bogusław Bielec & Marta Dendys, 2020. "Review of the Low-Enthalpy Lower Cretaceous Geothermal Energy Resources in Poland as an Environmentally Friendly Source of Heat for Urban District Heating Systems," Energies, MDPI, vol. 13(6), pages 1-13, March.
    6. Bujakowski, Wiesław & Tomaszewska, Barbara & Miecznik, Maciej, 2016. "The Podhale geothermal reservoir simulation for long-term sustainable production," Renewable Energy, Elsevier, vol. 99(C), pages 420-430.
    7. Michał Kaczmarczyk & Barbara Tomaszewska & Agnieszka Operacz, 2020. "Sustainable Utilization of Low Enthalpy Geothermal Resources to Electricity Generation through a Cascade System," Energies, MDPI, vol. 13(10), pages 1-18, May.
    8. Michał Kaczmarczyk & Barbara Tomaszewska & Leszek Pająk, 2020. "Geological and Thermodynamic Analysis of Low Enthalpy Geothermal Resources to Electricity Generation Using ORC and Kalina Cycle Technology," Energies, MDPI, vol. 13(6), pages 1-20, March.
    9. Tomasz Jeleński & Marta Dendys & Barbara Tomaszewska & Leszek Pająk, 2020. "The Potential of RES in the Reduction of Air Pollution: The SWOT Analysis of Smart Energy Management Solutions for Krakow Functional Area (KrOF)," Energies, MDPI, vol. 13(7), pages 1-26, April.
    10. Yildirim, Nurdan & Parmanto, Slamet & Akkurt, Gulden Gokcen, 2019. "Thermodynamic assessment of downhole heat exchangers for geothermal power generation," Renewable Energy, Elsevier, vol. 141(C), pages 1080-1091.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Agnieszka Operacz & Agnieszka Zachora-Buławska & Izabela Strzelecka & Mariusz Buda & Bogusław Bielec & Karolina Migdał & Tomasz Operacz, 2022. "The Standard Geothermal Plant as an Innovative Combined Renewable Energy Resources System: The Case from South Poland," Energies, MDPI, vol. 15(17), pages 1-23, September.
    2. Tomasz Sliwa & Tomasz Kowalski & Dominik Cekus & Aneta Sapińska-Śliwa, 2021. "Research on Fresh and Hardened Sealing Slurries with the Addition of Magnesium Regarding Thermal Conductivity for Energy Piles and Borehole Heat Exchangers," Energies, MDPI, vol. 14(16), pages 1-13, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcin Kremieniewski & Bartłomiej Jasiński & Grzegorz Zima & Łukasz Kut, 2021. "Reduction of Fractionation of Lightweight Slurry to Geothermal Boreholes," Energies, MDPI, vol. 14(12), pages 1-11, June.
    2. Piotr Rusiniak & Katarzyna Wątor & Ewa Kmiecik, 2020. "Inorganic Chromium Speciation in Geothermal Water of the Podhale Trough (Southern Poland) Used for Recreational Purposes," Energies, MDPI, vol. 13(14), pages 1-18, July.
    3. Agnieszka Operacz & Agnieszka Zachora-Buławska & Izabela Strzelecka & Mariusz Buda & Bogusław Bielec & Karolina Migdał & Tomasz Operacz, 2022. "The Standard Geothermal Plant as an Innovative Combined Renewable Energy Resources System: The Case from South Poland," Energies, MDPI, vol. 15(17), pages 1-23, September.
    4. Magdalena Tyszer & Wiesław Bujakowski & Barbara Tomaszewska & Bogusław Bielec, 2020. "Geothermal Water Management Using the Example of the Polish Lowland (Poland)—Key Aspects Related to Co-Management of Drinking and Geothermal Water," Energies, MDPI, vol. 13(10), pages 1-13, May.
    5. Dominika Matuszewska & Marta Kuta & Piotr Olczak, 2020. "Techno-Economic Assessment of Mobilized Thermal Energy Storage System Using Geothermal Source in Polish Conditions," Energies, MDPI, vol. 13(13), pages 1-24, July.
    6. Krzysztof Nowak & Sławomir Rabczak, 2020. "Technical and Economic Analysis of the External Surface Heating System on the Example of a Car Park," Energies, MDPI, vol. 13(24), pages 1-15, December.
    7. Sowizdzal, Anna, 2018. "Geothermal energy resources in Poland – Overview of the current state of knowledge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4020-4027.
    8. Michał Kaczmarczyk & Barbara Tomaszewska & Agnieszka Operacz, 2020. "Sustainable Utilization of Low Enthalpy Geothermal Resources to Electricity Generation through a Cascade System," Energies, MDPI, vol. 13(10), pages 1-18, May.
    9. Michał Kaczmarczyk & Barbara Tomaszewska & Leszek Pająk, 2020. "Geological and Thermodynamic Analysis of Low Enthalpy Geothermal Resources to Electricity Generation Using ORC and Kalina Cycle Technology," Energies, MDPI, vol. 13(6), pages 1-20, March.
    10. Szturgulewski, Kacper & Głuch, Jerzy & Drosińska-Komor, Marta & Ziółkowski, Paweł & Gardzilewicz, Andrzej & Brzezińska-Gołębiewska, Katarzyna, 2024. "Hybrid geothermal-fossil power cycle analysis in a Polish setting with a focus on off-design performance and CO2 emissions reductions," Energy, Elsevier, vol. 299(C).
    11. Anna Chmielowska & Anna Sowiżdżał & Barbara Tomaszewska, 2021. "Prospects of Using Hydrocarbon Deposits from the Autochthonous Miocene Formation (Eastern Carpathian Foredeep, Poland) for Geothermal Purposes," Energies, MDPI, vol. 14(11), pages 1-28, May.
    12. Ryszard Zwierzchowski & Marcin Wołowicz, 2020. "Energy and Exergy Analysis of Sensible Thermal Energy Storage—Hot Water Tank for a Large CHP Plant in Poland," Energies, MDPI, vol. 13(18), pages 1-16, September.
    13. Semmari, Hamza & Bouaicha, Foued & Aberkane, Sofiane & Filali, Abdelkader & Blessent, Daniela & Badache, Messaoud, 2024. "Geological context and thermo-economic study of an indirect heat ORC geothermal power plant for the northeast region of Algeria," Energy, Elsevier, vol. 290(C).
    14. Tomasz Sliwa & Aneta Sapińska-Śliwa & Andrzej Gonet & Tomasz Kowalski & Anna Sojczyńska, 2021. "Geothermal Boreholes in Poland—Overview of the Current State of Knowledge," Energies, MDPI, vol. 14(11), pages 1-21, June.
    15. Piotr Gradziuk & Aleksandra Siudek & Anna M. Klepacka & Wojciech J. Florkowski & Anna Trocewicz & Iryna Skorokhod, 2022. "Heat Pump Installation in Public Buildings: Savings and Environmental Benefits in Underserved Rural Areas," Energies, MDPI, vol. 15(21), pages 1-16, October.
    16. Aliyu, Musa D. & Archer, Rosalind A., 2021. "A thermo-hydro-mechanical model of a hot dry rock geothermal reservoir," Renewable Energy, Elsevier, vol. 176(C), pages 475-493.
    17. Gao, Xuefeng & Zhang, Yanjun & Cheng, Yuxiang & Huang, Yibin & Deng, Hao & Ma, Yongjie, 2022. "A novel strategy utilizing local fracture networks to enhance CBHE heat extraction performance: A case study of the Songyuan geothermal field in China," Energy, Elsevier, vol. 255(C).
    18. Diana D’Agostino & Francesco Esposito & Adriana Greco & Claudia Masselli & Francesco Minichiello, 2020. "Parametric Analysis on an Earth-to-Air Heat Exchanger Employed in an Air Conditioning System," Energies, MDPI, vol. 13(11), pages 1-24, June.
    19. Sun, Fengrui & Yao, Yuedong & Li, Guozhen & Li, Xiangfang, 2018. "Geothermal energy extraction in CO2 rich basin using abandoned horizontal wells," Energy, Elsevier, vol. 158(C), pages 760-773.
    20. Reyes-Antonio, Claudio Antonio & Iglesias-Silva, Gustavo Arturo & Rubio-Maya, Carlos & Fuentes-Cortés, Luis Fabián, 2024. "Multi-objective design of off-grid low-enthalpy geothermal generation systems considering partial-load operations," Energy, Elsevier, vol. 294(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:15:p:3882-:d:391793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.