IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i17p6230-d898784.html
   My bibliography  Save this article

Energy and Exergy Analyses of Geothermal Organic Rankine Cycles Considering the Effect of Brine Reinjection Temperature

Author

Listed:
  • Yuan Zhao

    (Powerchina Huadong Engineering Corporation Limited, Hangzhou 311122, China)

  • Chenghao Gao

    (Powerchina Huadong Engineering Corporation Limited, Hangzhou 311122, China)

  • Chengjun Li

    (Powerchina Huadong Engineering Corporation Limited, Hangzhou 311122, China)

  • Jie Sun

    (State Key Laboratory of Petroleum Resources and Prospecting, College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing 102249, China
    Patent Examination Cooperation (Jiangsu) Center of The Patent Office, China National Intellectual Property Administration, Suzhou 215163, China)

  • Chunyan Wang

    (State Key Laboratory of Petroleum Resources and Prospecting, College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing 102249, China)

  • Qiang Liu

    (State Key Laboratory of Petroleum Resources and Prospecting, College of Mechanical and Transportation Engineering, China University of Petroleum, Beijing 102249, China)

  • Jun Zhao

    (Key Laboratory of Efficient Utilization of Low and Medium Grade Energy, Ministry of Education, Tianjin University, Tianjin 300350, China)

Abstract

The organic Rankine cycles (ORCs) have been used to convert low-enthalpy geothermal brine into power. Parameter optimization and working fluid selection are the main approaches to enhance geothermal ORC performance. This work uses environmentally friendly fluids, including R1224yd(Z), R1233zd(E), R1336mzz(Z), R601 and R601a, as the geothermal ORC working fluids. The evaporation temperatures of the selected fluids were optimized to maximize the cycle net power outputs. The thermodynamic characteristics are investigated with the consideration of the influence of the allowed reinjection temperature (ARIT). Among the selected fluids, R1224yd(Z) has the highest optimal evaporation temperature with the maximum turbine power output for a brine inlet temperature (BIT) higher than 120 °C, especially at a lower allowed reinjection temperature. However, the parasitic power consumption by the pumps in an ORC with R1224yd(Z) is also higher than with the other four fluids. The net power output for ORC with R1336mzz(Z) is slightly more than that with R1224yd(Z). Although the optimal evaporation temperature for a RORC is lower than that for an ORC, the higher preheater inlet temperature leads to a higher geothermal heating exergy efficiency and more power output for a BIT less than 120 °C. The RORC with R1336mzz(Z) produces 2.6% more net power than an ORC for a brine inlet temperature of 100 °C. As the ARIT increases from 70 °C to 75 °C, the plant exergy efficiencies of ORCs are decreased by 6–8% for a geothermal brine inlet temperature of 100 °C.

Suggested Citation

  • Yuan Zhao & Chenghao Gao & Chengjun Li & Jie Sun & Chunyan Wang & Qiang Liu & Jun Zhao, 2022. "Energy and Exergy Analyses of Geothermal Organic Rankine Cycles Considering the Effect of Brine Reinjection Temperature," Energies, MDPI, vol. 15(17), pages 1-20, August.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6230-:d:898784
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/17/6230/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/17/6230/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alvin Kiprono Bett & Saeid Jalilinasrabady, 2021. "Optimization of ORC Power Plants for Geothermal Application in Kenya by Combining Exergy and Pinch Point Analysis," Energies, MDPI, vol. 14(20), pages 1-17, October.
    2. Zhang, Cheng & Liu, Chao & Xu, Xiaoxiao & Li, Qibin & Wang, Shukun & Chen, Xi, 2018. "Effects of superheat and internal heat exchanger on thermo-economic performance of organic Rankine cycle based on fluid type and heat sources," Energy, Elsevier, vol. 159(C), pages 482-495.
    3. Wang, Yongzhen & Li, Chengjun & Zhao, Jun & Wu, Boyuan & Du, Yanping & Zhang, Jing & Zhu, Yilin, 2021. "The above-ground strategies to approach the goal of geothermal power generation in China: State of art and future researches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    4. Lecompte, Steven & Huisseune, Henk & van den Broek, Martijn & Vanslambrouck, Bruno & De Paepe, Michel, 2015. "Review of organic Rankine cycle (ORC) architectures for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 448-461.
    5. Astolfi, Marco & Romano, Matteo C. & Bombarda, Paola & Macchi, Ennio, 2014. "Binary ORC (organic Rankine cycles) power plants for the exploitation of medium–low temperature geothermal sources – Part A: Thermodynamic optimization," Energy, Elsevier, vol. 66(C), pages 423-434.
    6. Chao Zhang & Jinglun Fu & Pengfei Yuan & Jianjun Liu, 2018. "Guidelines for Optimal Selection of Subcritical Low-Temperature Geothermal Organic Rankine Cycle Configuration Considering Reinjection Temperature Limits," Energies, MDPI, vol. 11(11), pages 1-18, October.
    7. Yari, Mortaza, 2010. "Exergetic analysis of various types of geothermal power plants," Renewable Energy, Elsevier, vol. 35(1), pages 112-121.
    8. Dawo, Fabian & Fleischmann, Jonas & Kaufmann, Florian & Schifflechner, Christopher & Eyerer, Sebastian & Wieland, Christoph & Spliethoff, Hartmut, 2021. "R1224yd(Z), R1233zd(E) and R1336mzz(Z) as replacements for R245fa: Experimental performance, interaction with lubricants and environmental impact," Applied Energy, Elsevier, vol. 288(C).
    9. Liu, Qiang & Duan, Yuanyuan & Yang, Zhen, 2013. "Performance analyses of geothermal organic Rankine cycles with selected hydrocarbon working fluids," Energy, Elsevier, vol. 63(C), pages 123-132.
    10. Xinxin Zhang & Yin Zhang & Min Cao & Jingfu Wang & Yuting Wu & Chongfang Ma, 2019. "Working Fluid Selection for Organic Rankine Cycle Using Single-Screw Expander," Energies, MDPI, vol. 12(16), pages 1-23, August.
    11. Ladislao Eduardo Méndez-Cruz & Miguel Ángel Gutiérrez-Limón & Helen Lugo-Méndez & Raúl Lugo-Leyte & Teresa Lopez-Arenas & Mauricio Sales-Cruz, 2022. "Comparative Thermodynamic Analysis of the Performance of an Organic Rankine Cycle Using Different Working Fluids," Energies, MDPI, vol. 15(7), pages 1-23, April.
    12. Zhu, Jialing & Hu, Kaiyong & Zhang, Wei & Lu, Xinli, 2017. "A study on generating a map for selection of optimum power generation cycles used for Enhanced Geothermal Systems," Energy, Elsevier, vol. 133(C), pages 502-512.
    13. Shuozhuo Hu & Zhen Yang & Jian Li & Yuanyuan Duan, 2021. "A Review of Multi-Objective Optimization in Organic Rankine Cycle (ORC) System Design," Energies, MDPI, vol. 14(20), pages 1-36, October.
    14. Eyerer, Sebastian & Dawo, Fabian & Kaindl, Johannes & Wieland, Christoph & Spliethoff, Hartmut, 2019. "Experimental investigation of modern ORC working fluids R1224yd(Z) and R1233zd(E) as replacements for R245fa," Applied Energy, Elsevier, vol. 240(C), pages 946-963.
    15. Karimi, Shahram & Mansouri, Sima, 2018. "A comparative profitability study of geothermal electricity production in developed and developing countries: Exergoeconomic analysis and optimization of different ORC configurations," Renewable Energy, Elsevier, vol. 115(C), pages 600-619.
    16. Li, Jian & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen & Liu, Qiang, 2018. "Parametric optimization and thermodynamic performance comparison of single-pressure and dual-pressure evaporation organic Rankine cycles," Applied Energy, Elsevier, vol. 217(C), pages 409-421.
    17. Yang, Xufei & Xu, Jinliang & Miao, Zheng & Zou, Jinghuang & Qi, Fengliang, 2016. "The definition of non-dimensional integration temperature difference and its effect on organic Rankine cycle," Applied Energy, Elsevier, vol. 167(C), pages 17-33.
    18. Manente, Giovanni & Lazzaretto, Andrea & Bonamico, Eleonora, 2017. "Design guidelines for the choice between single and dual pressure layouts in organic Rankine cycle (ORC) systems," Energy, Elsevier, vol. 123(C), pages 413-431.
    19. Ye, Zhenhong & Yang, Jingye & Shi, Junye & Chen, Jiangping, 2020. "Thermo-economic and environmental analysis of various low-GWP refrigerants in Organic Rankine cycle system," Energy, Elsevier, vol. 199(C).
    20. Baccioli, A. & Antonelli, M. & Desideri, U., 2017. "Technical and economic analysis of organic flash regenerative cycles (OFRCs) for low temperature waste heat recovery," Applied Energy, Elsevier, vol. 199(C), pages 69-87.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Ehtisham Siddiqui & Eydhah Almatrafi & Usman Saeed & Aqeel Ahmad Taimoor, 2023. "Selection of Organic Fluid Based on Exergetic Performance of Subcritical Organic Rankine Cycle (ORC) for Warm Regions," Energies, MDPI, vol. 16(13), pages 1-14, July.
    2. Mohammed Alghamdi & Ibrahim Al-Kharsan & Sana Shahab & Abdullah Albaker & Reza Alayi & Laveet Kumar & Mamdouh El Haj Assad, 2023. "Investigation of Energy and Exergy of Geothermal Organic Rankine Cycle," Energies, MDPI, vol. 16(5), pages 1-13, February.
    3. Xu Ping & Baofeng Yao & Hongguang Zhang & Hongzhi Zhang & Jia Liang & Meng Yuan & Kai Niu & Yan Wang, 2022. "Comprehensive Performance Assessment of Dual Loop Organic Rankine Cycle (DORC) for CNG Engine: Energy, Thermoeconomic and Environment," Energies, MDPI, vol. 15(21), pages 1-28, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nenad Mustapić & Vladislav Brkić & Željko Duić & Toni Kralj, 2022. "Thermodynamic Optimization of Advanced Organic Rankine Cycle Configurations for Geothermal Energy Applications," Energies, MDPI, vol. 15(19), pages 1-36, September.
    2. Wang, Lv & Ge, Zhong & Xu, Jian & Xie, Jianbin & Xie, Zhiyong, 2023. "Thermo-economic evaluations of novel dual-heater regenerative organic flash cycle (DROFC)," Energy, Elsevier, vol. 283(C).
    3. Jiansheng, Wang & Lide, Su & Qiang, Zhu & Jintao, Niu, 2022. "Numerical investigation on power generation performance of enhanced geothermal system with horizontal well," Applied Energy, Elsevier, vol. 325(C).
    4. Wang, Zengli & Shao, Hua & Shao, Mingcheng & Dai, Zeyu & Zhang, Rao, 2024. "Thermodynamic analysis of a coupled system based on total flow cycle and partially evaporated organic Rankine cycle for hot dry rock utilization," Renewable Energy, Elsevier, vol. 225(C).
    5. Semmari, Hamza & Bouaicha, Foued & Aberkane, Sofiane & Filali, Abdelkader & Blessent, Daniela & Badache, Messaoud, 2024. "Geological context and thermo-economic study of an indirect heat ORC geothermal power plant for the northeast region of Algeria," Energy, Elsevier, vol. 290(C).
    6. Fabien Marty & Sylvain Serra & Sabine Sochard & Jean-Michel Reneaume, 2019. "Exergy Analysis and Optimization of a Combined Heat and Power Geothermal Plant," Energies, MDPI, vol. 12(6), pages 1-22, March.
    7. Xia, Xiaoxia & Yang, Chengwu & Wang, Zhiqi & Sun, Tong & Zhang, Hualong & Wu, Jinhao, 2024. "Multi-objective optimization of the dual-pressure organic Rankine cycle system based on the orthogonal design method under different external conditions," Energy, Elsevier, vol. 296(C).
    8. Li, Jian & Ge, Zhong & Duan, Yuanyuan & Yang, Zhen & Liu, Qiang, 2018. "Parametric optimization and thermodynamic performance comparison of single-pressure and dual-pressure evaporation organic Rankine cycles," Applied Energy, Elsevier, vol. 217(C), pages 409-421.
    9. Zhang, Yi-Fan & Li, Ming-Jia & Ren, Xiao & Duan, Xin-Yue & Wu, Chia-Jung & Xi, Huan & Feng, Yong-Qiang & Gong, Liang & Hung, Tzu-Chen, 2022. "Effect of heat source supplies on system behaviors of ORCs with different capacities: An experimental comparison between the 3 kW and 10 kW unit," Energy, Elsevier, vol. 254(PB).
    10. Michał Kaczmarczyk & Barbara Tomaszewska & Agnieszka Operacz, 2020. "Sustainable Utilization of Low Enthalpy Geothermal Resources to Electricity Generation through a Cascade System," Energies, MDPI, vol. 13(10), pages 1-18, May.
    11. Kang, Lixia & Tang, Jianping & Liu, Yongzhong, 2020. "Optimal design of an organic Rankine cycle system considering the expected variations on heat sources," Energy, Elsevier, vol. 213(C).
    12. Li, Jian & Peng, Xiayao & Yang, Zhen & Hu, Shuozhuo & Duan, Yuanyuan, 2022. "Design, improvements and applications of dual-pressure evaporation organic Rankine cycles: A review," Applied Energy, Elsevier, vol. 311(C).
    13. Eyerer, Sebastian & Dawo, Fabian & Schifflechner, Christopher & Niederdränk, Anne & Spliethoff, Hartmut & Wieland, Christoph, 2022. "Experimental evaluation of an ORC-CHP architecture based on regenerative preheating for geothermal applications," Applied Energy, Elsevier, vol. 315(C).
    14. Mustapić, N. & Kralj, Toni & Vujanović, Milan, 2024. "Split flow principle implementation for advanced subcritical double stage organic rankine cycle configuration for geothermal power production," Energy, Elsevier, vol. 303(C).
    15. Chao Zhang & Jinglun Fu & Pengfei Yuan & Jianjun Liu, 2018. "Guidelines for Optimal Selection of Subcritical Low-Temperature Geothermal Organic Rankine Cycle Configuration Considering Reinjection Temperature Limits," Energies, MDPI, vol. 11(11), pages 1-18, October.
    16. Zhang, Yifan & Ren, Xiao & Duan, Xinyue & Gong, Liang & Hung, Tzu-Chen, 2024. "Strategy for the zeotropic organic rankine cycle operation to match the heat sink variation," Energy, Elsevier, vol. 286(C).
    17. Braimakis, Konstantinos & Grispos, Victoras & Karellas, Sotirios, 2021. "Exergetic efficiency potential of double-stage ORCs with zeotropic mixtures of natural hydrocarbons and CO2," Energy, Elsevier, vol. 218(C).
    18. Wang, Mingtao & Qu, Lin & Liu, Huanwei & Chen, Pengji & Wang, Xuan, 2024. "Performance improvement analysis of the regenerative dual-pressure organic flash cycle assisted by ejectors," Energy, Elsevier, vol. 297(C).
    19. Li, Jian & Yang, Zhen & Hu, Shuozhuo & Yang, Fubin & Duan, Yuanyuan, 2020. "Thermo-economic analyses and evaluations of small-scale dual-pressure evaporation organic Rankine cycle system using pure fluids," Energy, Elsevier, vol. 206(C).
    20. Zhang, Ji & Wu, Ding & Huang, Xiaohui & Hu, Xudong & Fang, Xi & Wen, Chuang, 2024. "Comparative study on the organic rankine cycle off-design performance under different zeotropic mixture flow boiling correlations," Renewable Energy, Elsevier, vol. 226(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:17:p:6230-:d:898784. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.