IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v290y2024ics036054422400094x.html
   My bibliography  Save this article

Geological context and thermo-economic study of an indirect heat ORC geothermal power plant for the northeast region of Algeria

Author

Listed:
  • Semmari, Hamza
  • Bouaicha, Foued
  • Aberkane, Sofiane
  • Filali, Abdelkader
  • Blessent, Daniela
  • Badache, Messaoud

Abstract

This article presents a study of the electricity generation potential using ORC systems of the most important geothermal sites in northeastern Algeria, combining geological, thermodynamic and economic analysis. The results highlight that geothermal electricity is technically feasible with the selected indirect heat ORC geothermal plant. Such production can present an interesting economic profitability when considering the international electricity price. The best economic performance was obtained for the geothermal site of Meskhoutine leading to a depreciated payback period of 10.8 years. The electricity production cost was evaluated at 0.21$/kWh for an electricity production capacity of 498 kW. Such performance is completely breakdown when considering Algerian subsidised electricity prices. These subsidies must be revised. Otherwise, it will harm the profitability of renewable energy systems, limit their development, and constrain seriously the Algerian energy transition road map.

Suggested Citation

  • Semmari, Hamza & Bouaicha, Foued & Aberkane, Sofiane & Filali, Abdelkader & Blessent, Daniela & Badache, Messaoud, 2024. "Geological context and thermo-economic study of an indirect heat ORC geothermal power plant for the northeast region of Algeria," Energy, Elsevier, vol. 290(C).
  • Handle: RePEc:eee:energy:v:290:y:2024:i:c:s036054422400094x
    DOI: 10.1016/j.energy.2024.130323
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422400094X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130323?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alvin Kiprono Bett & Saeid Jalilinasrabady, 2021. "Optimization of ORC Power Plants for Geothermal Application in Kenya by Combining Exergy and Pinch Point Analysis," Energies, MDPI, vol. 14(20), pages 1-17, October.
    2. Mohammadzadeh Bina, Saeid & Jalilinasrabady, Saeid & Fujii, Hikari, 2017. "Energy, economic and environmental (3E) aspects of internal heat exchanger for ORC geothermal power plants," Energy, Elsevier, vol. 140(P1), pages 1096-1106.
    3. Matthew Read & Ian Smith & Nikola Stosic & Ahmed Kovacevic, 2016. "Comparison of Organic Rankine Cycle Systems under Varying Conditions Using Turbine and Twin-Screw Expanders," Energies, MDPI, vol. 9(8), pages 1-20, August.
    4. Saibi, Hakim, 2009. "Geothermal resources in Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2544-2552, December.
    5. Boukelia, T.E. & Arslan, O. & Djimli, S. & Kabar, Y., 2023. "ORC fluids selection for a bottoming binary geothermal power plant integrated with a CSP plant," Energy, Elsevier, vol. 265(C).
    6. Hung, T.C. & Wang, S.K. & Kuo, C.H. & Pei, B.S. & Tsai, K.F., 2010. "A study of organic working fluids on system efficiency of an ORC using low-grade energy sources," Energy, Elsevier, vol. 35(3), pages 1403-1411.
    7. Adams, Benjamin M. & Kuehn, Thomas H. & Bielicki, Jeffrey M. & Randolph, Jimmy B. & Saar, Martin O., 2015. "A comparison of electric power output of CO2 Plume Geothermal (CPG) and brine geothermal systems for varying reservoir conditions," Applied Energy, Elsevier, vol. 140(C), pages 365-377.
    8. Semmari, Hamza & Stitou, Driss & Mauran, Sylvain, 2012. "A novel Carnot-based cycle for ocean thermal energy conversion," Energy, Elsevier, vol. 43(1), pages 361-375.
    9. Marcin Jankowski & Aleksandra Borsukiewicz & Kamel Hooman, 2020. "Development of Decision-Making Tool and Pareto Set Analysis for Bi-Objective Optimization of an ORC Power Plant," Energies, MDPI, vol. 13(20), pages 1-27, October.
    10. Michał Kaczmarczyk & Barbara Tomaszewska & Agnieszka Operacz, 2020. "Sustainable Utilization of Low Enthalpy Geothermal Resources to Electricity Generation through a Cascade System," Energies, MDPI, vol. 13(10), pages 1-18, May.
    11. Jankowski, Marcin & Borsukiewicz, Aleksandra & Wiśniewski, Sławomir & Hooman, Kamel, 2020. "Multi-objective analysis of an influence of a geothermal water salinity on optimal operating parameters in low-temperature ORC power plant," Energy, Elsevier, vol. 202(C).
    12. Michał Kaczmarczyk & Barbara Tomaszewska & Leszek Pająk, 2020. "Geological and Thermodynamic Analysis of Low Enthalpy Geothermal Resources to Electricity Generation Using ORC and Kalina Cycle Technology," Energies, MDPI, vol. 13(6), pages 1-20, March.
    13. Madhawa Hettiarachchi, H.D. & Golubovic, Mihajlo & Worek, William M. & Ikegami, Yasuyuki, 2007. "Optimum design criteria for an Organic Rankine cycle using low-temperature geothermal heat sources," Energy, Elsevier, vol. 32(9), pages 1698-1706.
    14. Anna Stoppato & Alberto Benato, 2020. "Life Cycle Assessment of a Commercially Available Organic Rankine Cycle Unit Coupled with a Biomass Boiler," Energies, MDPI, vol. 13(7), pages 1-17, April.
    15. Anderson, Austin & Rezaie, Behnaz, 2019. "Geothermal technology: Trends and potential role in a sustainable future," Applied Energy, Elsevier, vol. 248(C), pages 18-34.
    16. Dominika Matuszewska & Piotr Olczak, 2020. "Evaluation of Using Gas Turbine to Increase Efficiency of the Organic Rankine Cycle (ORC)," Energies, MDPI, vol. 13(6), pages 1-21, March.
    17. Cui, Guodong & Pei, Shufeng & Rui, Zhenhua & Dou, Bin & Ning, Fulong & Wang, Jiaqiang, 2021. "Whole process analysis of geothermal exploitation and power generation from a depleted high-temperature gas reservoir by recycling CO2," Energy, Elsevier, vol. 217(C).
    18. Astolfi, Marco & Romano, Matteo C. & Bombarda, Paola & Macchi, Ennio, 2014. "Binary ORC (organic Rankine cycles) power plants for the exploitation of medium–low temperature geothermal sources – Part A: Thermodynamic optimization," Energy, Elsevier, vol. 66(C), pages 423-434.
    19. Tut Haklıdır, Füsun S., 2020. "The importance of long-term well management in geothermal power systems using fuzzy control: A Western Anatolia (Turkey) case study," Energy, Elsevier, vol. 213(C).
    20. Barbier, Enrico, 2002. "Geothermal energy technology and current status: an overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(1-2), pages 3-65.
    21. Vonsée, Bram & Crijns-Graus, Wina & Liu, Wen, 2019. "Energy technology dependence - A value chain analysis of geothermal power in the EU," Energy, Elsevier, vol. 178(C), pages 419-435.
    22. Eyerer, Sebastian & Dawo, Fabian & Kaindl, Johannes & Wieland, Christoph & Spliethoff, Hartmut, 2019. "Experimental investigation of modern ORC working fluids R1224yd(Z) and R1233zd(E) as replacements for R245fa," Applied Energy, Elsevier, vol. 240(C), pages 946-963.
    23. Panesar, Angad Singh, 2017. "An innovative Organic Rankine Cycle system for integrated cooling and heat recovery," Applied Energy, Elsevier, vol. 186(P3), pages 396-407.
    24. Zhang, Cheng & Liu, Chao & Wang, Shukun & Xu, Xiaoxiao & Li, Qibin, 2017. "Thermo-economic comparison of subcritical organic Rankine cycle based on different heat exchanger configurations," Energy, Elsevier, vol. 123(C), pages 728-741.
    25. Ye, Zhenhong & Yang, Jingye & Shi, Junye & Chen, Jiangping, 2020. "Thermo-economic and environmental analysis of various low-GWP refrigerants in Organic Rankine cycle system," Energy, Elsevier, vol. 199(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Szturgulewski, Kacper & Głuch, Jerzy & Drosińska-Komor, Marta & Ziółkowski, Paweł & Gardzilewicz, Andrzej & Brzezińska-Gołębiewska, Katarzyna, 2024. "Hybrid geothermal-fossil power cycle analysis in a Polish setting with a focus on off-design performance and CO2 emissions reductions," Energy, Elsevier, vol. 299(C).
    2. Li, Pengcheng & Cao, Qing & Li, Jing & Wang, Yandong & Pei, Gang & Gao, Cai & Zhao, Hongling & Liu, Xunfen, 2020. "Effect of regenerator on the direct steam generation solar power system characterized by prolonged thermal storage and stable power conversion," Renewable Energy, Elsevier, vol. 159(C), pages 1099-1116.
    3. Yuan Zhao & Chenghao Gao & Chengjun Li & Jie Sun & Chunyan Wang & Qiang Liu & Jun Zhao, 2022. "Energy and Exergy Analyses of Geothermal Organic Rankine Cycles Considering the Effect of Brine Reinjection Temperature," Energies, MDPI, vol. 15(17), pages 1-20, August.
    4. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Insights into geothermal utilization of abandoned oil and gas wells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 44-60.
    5. Sun, Fengrui & Yao, Yuedong & Li, Guozhen & Li, Xiangfang, 2018. "Geothermal energy extraction in CO2 rich basin using abandoned horizontal wells," Energy, Elsevier, vol. 158(C), pages 760-773.
    6. Reyes-Antonio, Claudio Antonio & Iglesias-Silva, Gustavo Arturo & Rubio-Maya, Carlos & Fuentes-Cortés, Luis Fabián, 2024. "Multi-objective design of off-grid low-enthalpy geothermal generation systems considering partial-load operations," Energy, Elsevier, vol. 294(C).
    7. Calise, Francesco & Macaluso, Adriano & Piacentino, Antonio & Vanoli, Laura, 2017. "A novel hybrid polygeneration system supplying energy and desalinated water by renewable sources in Pantelleria Island," Energy, Elsevier, vol. 137(C), pages 1086-1106.
    8. Calise, Francesco & Dentice d'Accadia, Massimo & Macaluso, Adriano & Vanoli, Laura & Piacentino, Antonio, 2016. "A novel solar-geothermal trigeneration system integrating water desalination: Design, dynamic simulation and economic assessment," Energy, Elsevier, vol. 115(P3), pages 1533-1547.
    9. Steven Lecompte & Sanne Lemmens & Henk Huisseune & Martijn Van den Broek & Michel De Paepe, 2015. "Multi-Objective Thermo-Economic Optimization Strategy for ORCs Applied to Subcritical and Transcritical Cycles for Waste Heat Recovery," Energies, MDPI, vol. 8(4), pages 1-28, April.
    10. Nian, Yong-Le & Cheng, Wen-Long, 2018. "Evaluation of geothermal heating from abandoned oil wells," Energy, Elsevier, vol. 142(C), pages 592-607.
    11. Soltani, M. & Moradi Kashkooli, Farshad & Souri, Mohammad & Rafiei, Behnam & Jabarifar, Mohammad & Gharali, Kobra & Nathwani, Jatin S., 2021. "Environmental, economic, and social impacts of geothermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    12. Francesco Calise & Davide Capuano & Laura Vanoli, 2015. "Dynamic Simulation and Exergo-Economic Optimization of a Hybrid Solar–Geothermal Cogeneration Plant," Energies, MDPI, vol. 8(4), pages 1-41, April.
    13. Moloney, Francesca & Almatrafi, Eydhah & Goswami, D.Y., 2020. "Working fluid parametric analysis for recuperative supercritical organic Rankine cycles for medium geothermal reservoir temperatures," Renewable Energy, Elsevier, vol. 147(P3), pages 2874-2881.
    14. Schifflechner, Christopher & Dawo, Fabian & Eyerer, Sebastian & Wieland, Christoph & Spliethoff, Hartmut, 2020. "Thermodynamic comparison of direct supercritical CO2 and indirect brine-ORC concepts for geothermal combined heat and power generation," Renewable Energy, Elsevier, vol. 161(C), pages 1292-1302.
    15. Zhang, Wei & Li, Ye & Wu, Xiaoni & Guo, Shihao, 2018. "Review of the applied mechanical problems in ocean thermal energy conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 231-244.
    16. Li, Min & Zhao, Bingxiong, 2016. "Analytical thermal efficiency of medium-low temperature organic Rankine cycles derived from entropy-generation analysis," Energy, Elsevier, vol. 106(C), pages 121-130.
    17. Wang, Hailei & Peterson, Richard & Harada, Kevin & Miller, Erik & Ingram-Goble, Robbie & Fisher, Luke & Yih, James & Ward, Chris, 2011. "Performance of a combined organic Rankine cycle and vapor compression cycle for heat activated cooling," Energy, Elsevier, vol. 36(1), pages 447-458.
    18. Tchanche, Bertrand F. & Lambrinos, Gr. & Frangoudakis, A. & Papadakis, G., 2011. "Low-grade heat conversion into power using organic Rankine cycles – A review of various applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3963-3979.
    19. Hoang, Anh Tuan, 2018. "Waste heat recovery from diesel engines based on Organic Rankine Cycle," Applied Energy, Elsevier, vol. 231(C), pages 138-166.
    20. Ayub, Mohammad & Mitsos, Alexander & Ghasemi, Hadi, 2015. "Thermo-economic analysis of a hybrid solar-binary geothermal power plant," Energy, Elsevier, vol. 87(C), pages 326-335.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:290:y:2024:i:c:s036054422400094x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.