IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v294y2024ics0360544224006443.html
   My bibliography  Save this article

Multi-objective design of off-grid low-enthalpy geothermal generation systems considering partial-load operations

Author

Listed:
  • Reyes-Antonio, Claudio Antonio
  • Iglesias-Silva, Gustavo Arturo
  • Rubio-Maya, Carlos
  • Fuentes-Cortés, Luis Fabián

Abstract

This work addresses the multi-objective design of an organic Rankine cycle system for low-enthalpy applications. The design is generated from end-user demand variations. The model uses the reference equations of state of four working fluids commonly used in the literature: R1234yf, R1234ze (E), R134a and R245fa. This approach allows computing the optimal sizing of each unit of the equipment that composes the cycle, obtaining a suitable configuration for each working fluid. That is, the comparison between configurations is linked to the thermodynamic properties of the fluid. In addition, it addresses the phase changes present in each operation and the operational adjustments associated with changes in demand. Therefore, the optimal design captures partial load operation through a multi-period model. Given the off-grid operating conditions, the effects of coupling with energy storage systems are analyzed. The considered objective functions are the total annual cost and energy efficiency of the system. Results indicate that the sizing of the heat exchangers is significantly affected by phase change effects and that the R1234yf and R1234ze (E) fluids are promising since their thermodynamic properties allow for trade-offs between the economic and energy performance of the system. System efficiencies, considering part-load operation and demand variability, can be increased by up to 2 % with the inclusion of energy storage, significantly improving economic performance and reducing costs by up to 10 %.

Suggested Citation

  • Reyes-Antonio, Claudio Antonio & Iglesias-Silva, Gustavo Arturo & Rubio-Maya, Carlos & Fuentes-Cortés, Luis Fabián, 2024. "Multi-objective design of off-grid low-enthalpy geothermal generation systems considering partial-load operations," Energy, Elsevier, vol. 294(C).
  • Handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006443
    DOI: 10.1016/j.energy.2024.130872
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224006443
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130872?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kajurek, Jakub & Rusowicz, Artur & Grzebielec, Andrzej & Bujalski, Wojciech & Futyma, Kamil & Rudowicz, Zbigniew, 2019. "Selection of refrigerants for a modified organic Rankine cycle," Energy, Elsevier, vol. 168(C), pages 1-8.
    2. Boukelia, T.E. & Arslan, O. & Djimli, S. & Kabar, Y., 2023. "ORC fluids selection for a bottoming binary geothermal power plant integrated with a CSP plant," Energy, Elsevier, vol. 265(C).
    3. Singh, Parm Pal & Singh, Sukhmeet, 2010. "Realistic generation cost of solar photovoltaic electricity," Renewable Energy, Elsevier, vol. 35(3), pages 563-569.
    4. Michał Kaczmarczyk & Barbara Tomaszewska & Agnieszka Operacz, 2020. "Sustainable Utilization of Low Enthalpy Geothermal Resources to Electricity Generation through a Cascade System," Energies, MDPI, vol. 13(10), pages 1-18, May.
    5. Lee, Inkyu & Tester, Jefferson William & You, Fengqi, 2019. "Systems analysis, design, and optimization of geothermal energy systems for power production and polygeneration: State-of-the-art and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 551-577.
    6. Liu, Wei & Meinel, Dominik & Wieland, Christoph & Spliethoff, Hartmut, 2014. "Investigation of hydrofluoroolefins as potential working fluids in organic Rankine cycle for geothermal power generation," Energy, Elsevier, vol. 67(C), pages 106-116.
    7. Günther, Michael & Hellmann, Tim, 2017. "International environmental agreements for local and global pollution," Journal of Environmental Economics and Management, Elsevier, vol. 81(C), pages 38-58.
    8. Wang, Yuqing & Liu, Yingxin & Dou, Jinyue & Li, Mingzhu & Zeng, Ming, 2020. "Geothermal energy in China: Status, challenges, and policy recommendations," Utilities Policy, Elsevier, vol. 64(C).
    9. George Kyriakarakos & Erika Ntavou & Dimitris Manolakos, 2020. "Investigation of the Use of Low Temperature Geothermal Organic Rankine Cycle Engine in an Autonomous Polygeneration Microgrid," Sustainability, MDPI, vol. 12(24), pages 1-20, December.
    10. Wang, Yang & Voskov, Denis & Khait, Mark & Saeid, Sanaz & Bruhn, David, 2021. "Influential factors on the development of a low-enthalpy geothermal reservoir: A sensitivity study of a realistic field," Renewable Energy, Elsevier, vol. 179(C), pages 641-651.
    11. Eyerer, Sebastian & Dawo, Fabian & Kaindl, Johannes & Wieland, Christoph & Spliethoff, Hartmut, 2019. "Experimental investigation of modern ORC working fluids R1224yd(Z) and R1233zd(E) as replacements for R245fa," Applied Energy, Elsevier, vol. 240(C), pages 946-963.
    12. Wang, Jiangfeng & Yan, Zhequan & Wang, Man & Ma, Shaolin & Dai, Yiping, 2013. "Thermodynamic analysis and optimization of an (organic Rankine cycle) ORC using low grade heat source," Energy, Elsevier, vol. 49(C), pages 356-365.
    13. Schifflechner, Christopher & Kuhnert, Lara & Irrgang, Ludwig & Dawo, Fabian & Kaufmann, Florian & Wieland, Christoph & Spliethoff, Hartmut, 2023. "Geothermal trigeneration systems with Organic Rankine Cycles: Evaluation of different plant configurations considering part load behaviour," Renewable Energy, Elsevier, vol. 207(C), pages 218-233.
    14. Ranaweera, Iromi & Midtgård, Ole-Morten, 2016. "Optimization of operational cost for a grid-supporting PV system with battery storage," Renewable Energy, Elsevier, vol. 88(C), pages 262-272.
    15. Wang, Lingbao & Bu, Xianbiao & Li, Huashan, 2020. "Multi-objective optimization and off-design evaluation of organic rankine cycle (ORC) for low-grade waste heat recovery," Energy, Elsevier, vol. 203(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Semmari, Hamza & Bouaicha, Foued & Aberkane, Sofiane & Filali, Abdelkader & Blessent, Daniela & Badache, Messaoud, 2024. "Geological context and thermo-economic study of an indirect heat ORC geothermal power plant for the northeast region of Algeria," Energy, Elsevier, vol. 290(C).
    2. Li, Ligeng & Tian, Hua & Liu, Peng & Shi, Lingfeng & Shu, Gequn, 2021. "Optimization of CO2 Transcritical Power Cycle (CTPC) for engine waste heat recovery based on split concept," Energy, Elsevier, vol. 229(C).
    3. Gürgen, Samet & Altın, İsmail, 2022. "Novel decision-making strategy for working fluid selection in Organic Rankine Cycle: A case study for waste heat recovery of a marine diesel engine," Energy, Elsevier, vol. 252(C).
    4. Eyerer, Sebastian & Dawo, Fabian & Schifflechner, Christopher & Niederdränk, Anne & Spliethoff, Hartmut & Wieland, Christoph, 2022. "Experimental evaluation of an ORC-CHP architecture based on regenerative preheating for geothermal applications," Applied Energy, Elsevier, vol. 315(C).
    5. Shuozhuo Hu & Zhen Yang & Jian Li & Yuanyuan Duan, 2021. "A Review of Multi-Objective Optimization in Organic Rankine Cycle (ORC) System Design," Energies, MDPI, vol. 14(20), pages 1-36, October.
    6. Szturgulewski, Kacper & Głuch, Jerzy & Drosińska-Komor, Marta & Ziółkowski, Paweł & Gardzilewicz, Andrzej & Brzezińska-Gołębiewska, Katarzyna, 2024. "Hybrid geothermal-fossil power cycle analysis in a Polish setting with a focus on off-design performance and CO2 emissions reductions," Energy, Elsevier, vol. 299(C).
    7. Zhang, Xuefeng & Wang, Liwei & Wang, Zixuan & Wang, Lemin & Zhang, Zihan, 2022. "Non-steady thermodynamic characteristics of a pilot-scale organic Rankine cycle system with a thermally-driven pump," Energy, Elsevier, vol. 252(C).
    8. Meng, Dongyu & Liu, Qiang & Ji, Zhongli, 2022. "Effects of two-phase expander on the thermoeconomics of organic double-flash cycles for geothermal power generation," Energy, Elsevier, vol. 239(PD).
    9. Wang, Zhiqi & Pan, Huihui & Xia, Xiaoxia & Xie, Baoqi & Peng, Deqi & Yang, Huya, 2022. "Experimental investigation on steady and dynamic performance of organic Rankine cycle with R245fa/R141b under different cooling and expander speed conditions," Energy, Elsevier, vol. 241(C).
    10. Soltani, M. & Moradi Kashkooli, Farshad & Souri, Mohammad & Rafiei, Behnam & Jabarifar, Mohammad & Gharali, Kobra & Nathwani, Jatin S., 2021. "Environmental, economic, and social impacts of geothermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    11. Wang, Yongzhen & Li, Chengjun & Zhao, Jun & Wu, Boyuan & Du, Yanping & Zhang, Jing & Zhu, Yilin, 2021. "The above-ground strategies to approach the goal of geothermal power generation in China: State of art and future researches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    12. Dawo, Fabian & Fleischmann, Jonas & Kaufmann, Florian & Schifflechner, Christopher & Eyerer, Sebastian & Wieland, Christoph & Spliethoff, Hartmut, 2021. "R1224yd(Z), R1233zd(E) and R1336mzz(Z) as replacements for R245fa: Experimental performance, interaction with lubricants and environmental impact," Applied Energy, Elsevier, vol. 288(C).
    13. Ladislao Eduardo Méndez-Cruz & Miguel Ángel Gutiérrez-Limón & Helen Lugo-Méndez & Raúl Lugo-Leyte & Teresa Lopez-Arenas & Mauricio Sales-Cruz, 2022. "Comparative Thermodynamic Analysis of the Performance of an Organic Rankine Cycle Using Different Working Fluids," Energies, MDPI, vol. 15(7), pages 1-23, April.
    14. Nenad Mustapić & Vladislav Brkić & Željko Duić & Toni Kralj, 2022. "Thermodynamic Optimization of Advanced Organic Rankine Cycle Configurations for Geothermal Energy Applications," Energies, MDPI, vol. 15(19), pages 1-36, September.
    15. Feili, Milad & Rostamzadeh, Hadi & Ghaebi, Hadi, 2022. "Thermo-mechanical energy level approach integrated with exergoeconomic optimization for realistic cost evaluation of a novel micro-CCHP system," Renewable Energy, Elsevier, vol. 190(C), pages 630-657.
    16. García-Anteportalatina, Víctor Manuel & Martín, Mariano, 2022. "Process synthesis for the valorisation of low-grade heat: Geothermal brines and industrial waste streams," Renewable Energy, Elsevier, vol. 198(C), pages 733-748.
    17. Dominika Matuszewska & Piotr Olczak, 2020. "Evaluation of Using Gas Turbine to Increase Efficiency of the Organic Rankine Cycle (ORC)," Energies, MDPI, vol. 13(6), pages 1-21, March.
    18. He, Chao & Liu, Chao & Zhou, Mengtong & Xie, Hui & Xu, Xiaoxiao & Wu, Shuangying & Li, Yourong, 2014. "A new selection principle of working fluids for subcritical organic Rankine cycle coupling with different heat sources," Energy, Elsevier, vol. 68(C), pages 283-291.
    19. Allouch, Nizar, 2017. "The cost of segregation in (social) networks," Games and Economic Behavior, Elsevier, vol. 106(C), pages 329-342.
    20. Luo, Xianglong & Yi, Zhitong & Zhang, Bingjian & Mo, Songping & Wang, Chao & Song, Mengjie & Chen, Ying, 2017. "Mathematical modelling and optimization of the liquid separation condenser used in organic Rankine cycle," Applied Energy, Elsevier, vol. 185(P2), pages 1309-1323.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:294:y:2024:i:c:s0360544224006443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.