IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v36y2011i5p2528-2534.html
   My bibliography  Save this article

Power generation from medium temperature geothermal resources: ANN-based optimization of Kalina cycle system-34

Author

Listed:
  • Arslan, Oguz

Abstract

Recent technical developments have made it possible to generate electricity from geothermal resources of low and medium enthalpy. One of these technologies is the Kalina Cycle System. In this study, electricity generation from Simav geothermal field was investigated using the Kalina cycle system-34 (KCS-34). However, the design of these technologies requires more proficiency and longer times within complex calculations. An artificial neural network (ANN) is a new tool used to make a decision for the optimum working conditions of the processes within the expertise. In this study, the back-propagation learning algorithm with three different variants, namely Levenberg–Marguardt (LM), Pola–Ribiere Conjugate Gradient (CGP), and Scaled Conjugate Gradient (SCG), were used in the network so that the best approach could be found. The most suitable algorithm found was LM with 7 neurons in a single hidden layer. The obtained weights were used in optimization process by coupling the life-cycle-cost concepts.

Suggested Citation

  • Arslan, Oguz, 2011. "Power generation from medium temperature geothermal resources: ANN-based optimization of Kalina cycle system-34," Energy, Elsevier, vol. 36(5), pages 2528-2534.
  • Handle: RePEc:eee:energy:v:36:y:2011:i:5:p:2528-2534
    DOI: 10.1016/j.energy.2011.01.045
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544211000685
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2011.01.045?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kalogirou, Soteris A & Panteliou, Sofia & Dentsoras, Argiris, 1999. "Artificial neural networks used for the performance prediction of a thermosiphon solar water heater," Renewable Energy, Elsevier, vol. 18(1), pages 87-99.
    2. Şencan, Arzu & Yakut, Kemal A. & Kalogirou, Soteris A., 2006. "Thermodynamic analysis of absorption systems using artificial neural network," Renewable Energy, Elsevier, vol. 31(1), pages 29-43.
    3. Kalogirou, Soteris A. & Bojic, Milorad, 2000. "Artificial neural networks for the prediction of the energy consumption of a passive solar building," Energy, Elsevier, vol. 25(5), pages 479-491.
    4. Barbier, Enrico, 2002. "Geothermal energy technology and current status: an overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(1-2), pages 3-65.
    5. Fridleifsson, Ingvar B., 2001. "Geothermal energy for the benefit of the people," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(3), pages 299-312, September.
    6. Azadeh, A. & Ghaderi, S.F. & Anvari, M. & Saberi, M., 2007. "Performance assessment of electric power generations using an adaptive neural network algorithm," Energy Policy, Elsevier, vol. 35(6), pages 3155-3166, June.
    7. Kalogirou, Soteris A., 2000. "Applications of artificial neural-networks for energy systems," Applied Energy, Elsevier, vol. 67(1-2), pages 17-35, September.
    8. Hasan, Afif, 1999. "Optimizing insulation thickness for buildings using life cycle cost," Applied Energy, Elsevier, vol. 63(2), pages 115-124, June.
    9. Fast, M. & Palmé, T., 2010. "Application of artificial neural networks to the condition monitoring and diagnosis of a combined heat and power plant," Energy, Elsevier, vol. 35(2), pages 1114-1120.
    10. Wang, Jiangfeng & Sun, Zhixin & Dai, Yiping & Ma, Shaolin, 2010. "Parametric optimization design for supercritical CO2 power cycle using genetic algorithm and artificial neural network," Applied Energy, Elsevier, vol. 87(4), pages 1317-1324, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    2. Keçebaş, Ali & Alkan, Mehmet Ali & Yabanova, İsmail & Yumurtacı, Mehmet, 2013. "Energetic and economic evaluations of geothermal district heating systems by using ANN," Energy Policy, Elsevier, vol. 56(C), pages 558-567.
    3. Kljajić, Miroslav & Gvozdenac, Dušan & Vukmirović, Srdjan, 2012. "Use of Neural Networks for modeling and predicting boiler's operating performance," Energy, Elsevier, vol. 45(1), pages 304-311.
    4. Azadeh, A. & Saberi, M. & Seraj, O., 2010. "An integrated fuzzy regression algorithm for energy consumption estimation with non-stationary data: A case study of Iran," Energy, Elsevier, vol. 35(6), pages 2351-2366.
    5. Şencan, Arzu & Yakut, Kemal A. & Kalogirou, Soteris A., 2006. "Thermodynamic analysis of absorption systems using artificial neural network," Renewable Energy, Elsevier, vol. 31(1), pages 29-43.
    6. Ghritlahre, Harish Kumar & Prasad, Radha Krishna, 2018. "Application of ANN technique to predict the performance of solar collector systems - A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 84(C), pages 75-88.
    7. Carotenuto, Alberto & Ciccolella, Michela & Massarotti, Nicola & Mauro, Alessandro, 2016. "Models for thermo-fluid dynamic phenomena in low enthalpy geothermal energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 330-355.
    8. Sözen, Adnan & Ali Akçayol, M., 2004. "Modelling (using artificial neural-networks) the performance parameters of a solar-driven ejector-absorption cycle," Applied Energy, Elsevier, vol. 79(3), pages 309-325, November.
    9. Mohanraj, M. & Jayaraj, S. & Muraleedharan, C., 2012. "Applications of artificial neural networks for refrigeration, air-conditioning and heat pump systems—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1340-1358.
    10. Kalogirou, Soteris A., 2001. "Artificial neural networks in renewable energy systems applications: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(4), pages 373-401, December.
    11. Sanchez-Alfaro, Pablo & Sielfeld, Gerd & Campen, Bart Van & Dobson, Patrick & Fuentes, Víctor & Reed, Andy & Palma-Behnke, Rodrigo & Morata, Diego, 2015. "Geothermal barriers, policies and economics in Chile – Lessons for the Andes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1390-1401.
    12. Colorado, D. & Hernández, J.A. & Rivera, W. & Martínez, H. & Juárez, D., 2011. "Optimal operation conditions for a single-stage heat transformer by means of an artificial neural network inverse," Applied Energy, Elsevier, vol. 88(4), pages 1281-1290, April.
    13. Sowizdzal, Anna, 2018. "Geothermal energy resources in Poland – Overview of the current state of knowledge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4020-4027.
    14. Halkos, George E. & Tzeremes, Nickolaos G., 2014. "The effect of electricity consumption from renewable sources on countries׳ economic growth levels: Evidence from advanced, emerging and developing economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 166-173.
    15. Abbas, Tauqeer & Ahmed Bazmi, Aqeel & Waheed Bhutto, Abdul & Zahedi, Gholamreza, 2014. "Greener energy: Issues and challenges for Pakistan-geothermal energy prospective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 258-269.
    16. Etemoglu, A.B. & Can, M., 2007. "Classification of geothermal resources in Turkey by exergy analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(7), pages 1596-1606, September.
    17. Karytsas, Spyridon & Choropanitis, Ioannis, 2017. "Barriers against and actions towards renewable energy technologies diffusion: A Principal Component Analysis for residential ground source heat pump (GSHP) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 252-271.
    18. Kalogirou, Soteris A. & Florides, Georgios A. & Pouloupatis, Panayiotis D. & Christodoulides, Paul & Joseph-Stylianou, Josephina, 2015. "Artificial neural networks for the generation of a conductivity map of the ground," Renewable Energy, Elsevier, vol. 77(C), pages 400-407.
    19. Kose, Ramazan, 2007. "Geothermal energy potential for power generation in Turkey: A case study in Simav, Kutahya," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(3), pages 497-511, April.
    20. Kara Togun, Necla & Baysec, Sedat, 2010. "Prediction of torque and specific fuel consumption of a gasoline engine by using artificial neural networks," Applied Energy, Elsevier, vol. 87(1), pages 349-355, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:36:y:2011:i:5:p:2528-2534. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.