IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v299y2024ics0360544224011551.html
   My bibliography  Save this article

Hybrid geothermal-fossil power cycle analysis in a Polish setting with a focus on off-design performance and CO2 emissions reductions

Author

Listed:
  • Szturgulewski, Kacper
  • Głuch, Jerzy
  • Drosińska-Komor, Marta
  • Ziółkowski, Paweł
  • Gardzilewicz, Andrzej
  • Brzezińska-Gołębiewska, Katarzyna

Abstract

Growing demand for electricity due to economic development contributes to increased greenhouse gas production, especially CO2. However, emissions can be limited by enhancing the efficiency of primary energy conversion, such as integrating geothermal energy into coal-fired power plants. Therefore, this paper proposes replacing conventional feed-water heaters with geothermal preheaters to create a hybridized system. This study was based on a numerical model validated at a selected Polish power unit. The model was subsequently calibrated for off-design conditions to facilitate partial load analysis. The obtained characteristics outperformed those of the non-hybrid unit, generating over 18 MW of electric power output. Such an improvement could potentially boost the unit's net efficiency by more than 2.6 %. This enhancement is significant as power units typically operate under part load for approximately 90 % of the time, hence the need to evaluate the performance characteristics of hybridized units in those states. Furthermore, the research outlines the potential decrease in the plant's CO2 emission factor, with reductions reaching up to 6.5 % under off-design conditions. Based on a gap analysis of the existing literature, this paper's comprehensive partial load evaluation serves as a new addition to research on hybridized systems.

Suggested Citation

  • Szturgulewski, Kacper & Głuch, Jerzy & Drosińska-Komor, Marta & Ziółkowski, Paweł & Gardzilewicz, Andrzej & Brzezińska-Gołębiewska, Katarzyna, 2024. "Hybrid geothermal-fossil power cycle analysis in a Polish setting with a focus on off-design performance and CO2 emissions reductions," Energy, Elsevier, vol. 299(C).
  • Handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224011551
    DOI: 10.1016/j.energy.2024.131382
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224011551
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.131382?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alvin Kiprono Bett & Saeid Jalilinasrabady, 2021. "Optimization of ORC Power Plants for Geothermal Application in Kenya by Combining Exergy and Pinch Point Analysis," Energies, MDPI, vol. 14(20), pages 1-17, October.
    2. Boukelia, T.E. & Arslan, O. & Bouraoui, A., 2021. "Thermodynamic performance assessment of a new solar tower-geothermal combined power plant compared to the conventional solar tower power plant," Energy, Elsevier, vol. 232(C).
    3. Kujawa, Tomasz & Nowak, Władysław & Stachel, Aleksander A., 2006. "Utilization of existing deep geological wells for acquisitions of geothermal energy," Energy, Elsevier, vol. 31(5), pages 650-664.
    4. Boukelia, T.E. & Arslan, O. & Djimli, S. & Kabar, Y., 2023. "ORC fluids selection for a bottoming binary geothermal power plant integrated with a CSP plant," Energy, Elsevier, vol. 265(C).
    5. Witanowski, Łukasz & Ziółkowski, Paweł & Klonowicz, Piotr & Lampart, Piotr, 2023. "A hybrid approach to optimization of radial inflow turbine with principal component analysis," Energy, Elsevier, vol. 272(C).
    6. Brady Bokelman & Efstathios E. Michaelides & Dimitrios N. Michaelides, 2020. "A Geothermal-Solar Hybrid Power Plant with Thermal Energy Storage," Energies, MDPI, vol. 13(5), pages 1-19, February.
    7. Relva, Stefania Gomes & Silva, Vinícius Oliveira da & Gimenes, André Luiz Veiga & Udaeta, Miguel Edgar Morales & Ashworth, Peta & Peyerl, Drielli, 2021. "Enhancing developing countries’ transition to a low-carbon electricity sector," Energy, Elsevier, vol. 220(C).
    8. Ertesvåg, Ivar S. & Madejski, Paweł & Ziółkowski, Paweł & Mikielewicz, Dariusz, 2023. "Exergy analysis of a negative CO2 emission gas power plant based on water oxy-combustion of syngas from sewage sludge gasification and CCS," Energy, Elsevier, vol. 278(C).
    9. Barbara Kaczmarczyk & Karolina Lis & Anna Bogucka, 2023. "Renewable Energy Management in European Union Member States," Energies, MDPI, vol. 16(16), pages 1-12, August.
    10. Zhai, Haizhen & Jin, Guangrong & Liu, Lihua & Su, Zheng & Zeng, Yuchao & Liu, Jie & Li, Guangyu & Feng, Chuangji & Wu, Nengyou, 2023. "Parametric study of the geothermal exploitation performance from a HDR reservoir through multilateral horizontal wells: The Qiabuqia geothermal area, Gonghe Basin," Energy, Elsevier, vol. 275(C).
    11. Yanara Tranamil-Maripe & José M. Cardemil & Rodrigo Escobar & Diego Morata & Cristóbal Sarmiento-Laurel, 2022. "Assessing the Hybridization of an Existing Geothermal Plant by Coupling a CSP System for Increasing Power Generation," Energies, MDPI, vol. 15(6), pages 1-28, March.
    12. Michał Kaczmarczyk & Barbara Tomaszewska & Agnieszka Operacz, 2020. "Sustainable Utilization of Low Enthalpy Geothermal Resources to Electricity Generation through a Cascade System," Energies, MDPI, vol. 13(10), pages 1-18, May.
    13. Jankowski, Marcin & Borsukiewicz, Aleksandra & Wiśniewski, Sławomir & Hooman, Kamel, 2020. "Multi-objective analysis of an influence of a geothermal water salinity on optimal operating parameters in low-temperature ORC power plant," Energy, Elsevier, vol. 202(C).
    14. Michał Kaczmarczyk & Barbara Tomaszewska & Leszek Pająk, 2020. "Geological and Thermodynamic Analysis of Low Enthalpy Geothermal Resources to Electricity Generation Using ORC and Kalina Cycle Technology," Energies, MDPI, vol. 13(6), pages 1-20, March.
    15. Branimir Tramošljika & Paolo Blecich & Igor Bonefačić & Vladimir Glažar, 2021. "Advanced Ultra-Supercritical Coal-Fired Power Plant with Post-Combustion Carbon Capture: Analysis of Electricity Penalty and CO 2 Emission Reduction," Sustainability, MDPI, vol. 13(2), pages 1-20, January.
    16. Agnieszka Biernat-Jarka & Paulina Trębska & Sławomir Jarka, 2021. "The Role of Renewable Energy Sources in Alleviating Energy Poverty in Households in Poland," Energies, MDPI, vol. 14(10), pages 1-21, May.
    17. Ayub, Mohammad & Mitsos, Alexander & Ghasemi, Hadi, 2015. "Thermo-economic analysis of a hybrid solar-binary geothermal power plant," Energy, Elsevier, vol. 87(C), pages 326-335.
    18. Baydar, Ceyhun & Koç, Yıldız & Yağlı, Hüseyin & Koç, Ali & Depci̇, Tolga & Aygün, Mustafa Kemal, 2023. "Experimental detection of inadequacies and improvements for a geothermal power plant using single shaft double turbine binary Organic Rankine cycle as power system," Energy, Elsevier, vol. 283(C).
    19. Suchocki, T. & Witanowski, Ł. & Lampart, P. & Kazimierski, P. & Januszewicz, K. & Gawron, B., 2021. "Experimental investigation of performance and emission characteristics of a miniature gas turbine supplied by blends of kerosene and waste tyre pyrolysis oil," Energy, Elsevier, vol. 215(PA).
    20. Florian Heberle & Dieter Brüggemann, 2014. "Thermoeconomic Analysis of Hybrid Power Plant Concepts for Geothermal Combined Heat and Power Generation," Energies, MDPI, vol. 7(7), pages 1-16, July.
    21. Nasruddin, & Idrus Alhamid, M. & Daud, Yunus & Surachman, Arief & Sugiyono, Agus & Aditya, H.B. & Mahlia, T.M.I., 2016. "Potential of geothermal energy for electricity generation in Indonesia: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 733-740.
    22. Yu, Ziwang & Ye, Xiaoqi & Zhang, Yanjun & Gao, Ping & Huang, Yibin, 2023. "Experimental research on the thermal conductivity of unsaturated rocks in geothermal engineering," Energy, Elsevier, vol. 282(C).
    23. Piotr F. Borowski, 2022. "Management of Energy Enterprises in Zero-Emission Conditions: Bamboo as an Innovative Biomass for the Production of Green Energy by Power Plants," Energies, MDPI, vol. 15(5), pages 1-16, March.
    24. Aydin, Hakki & Merey, Sukru, 2021. "Design of Electrical Submersible Pump system in geothermal wells: A case study from West Anatolia, Turkey," Energy, Elsevier, vol. 230(C).
    25. Michał Igielski, 2023. "Project management in the renewable energy sources industry in Poland - identification of conditions and barriers," Entrepreneurship and Sustainability Issues, VsI Entrepreneurship and Sustainability Center, vol. 10(4), pages 135-151, June.
    26. Li, Zhibin & Huang, Wenbo & Chen, Juanwen & Cen, Jiwen & Cao, Wenjiong & Li, Feng & Jiang, Fangming, 2023. "An enhanced super-long gravity heat pipe geothermal system: Conceptual design and numerical study," Energy, Elsevier, vol. 267(C).
    27. Liu, Qiang & Shang, Linlin & Duan, Yuanyuan, 2016. "Performance analyses of a hybrid geothermal–fossil power generation system using low-enthalpy geothermal resources," Applied Energy, Elsevier, vol. 162(C), pages 149-162.
    28. McTigue, Joshua D. & Castro, Jose & Mungas, Greg & Kramer, Nick & King, John & Turchi, Craig & Zhu, Guangdong, 2018. "Hybridizing a geothermal power plant with concentrating solar power and thermal storage to increase power generation and dispatchability," Applied Energy, Elsevier, vol. 228(C), pages 1837-1852.
    29. Yin, Pei & Sardari, Farshid, 2023. "Process arrangement and multi-criteria study/optimization of a novel hybrid solar-geothermal scheme combined with a compressed air energy storage: Application of different MOPSO-based scenarios," Energy, Elsevier, vol. 282(C).
    30. Oyewo, Ayobami S. & Aghahosseini, Arman & Movsessian, Maria M. & Breyer, Christian, 2024. "A novel geothermal-PV led energy system analysis on the case of the central American countries Guatemala, Honduras, and Costa Rica," Renewable Energy, Elsevier, vol. 221(C).
    31. Chen, Shuhang & Qiu, Changxu & Shen, Yunwei & Tao, Xuan & Gan, Zhihua, 2024. "Thermodynamic and economic analysis of new coupling processes with large-scale hydrogen liquefaction process and liquid air energy storage," Energy, Elsevier, vol. 286(C).
    32. Mamdouh El Haj Assad & Mohammad Hossein Ahmadi & Milad Sadeghzadeh & Ameera Yassin & Alibek Issakhov, 2021. "Renewable hybrid energy systems using geothermal energy: hybrid solar thermal–geothermal power plant [Solar power technology for electricity generation: A critical review]," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 16(2), pages 518-530.
    33. Ghasemi, Hadi & Sheu, Elysia & Tizzanini, Alessio & Paci, Marco & Mitsos, Alexander, 2014. "Hybrid solar–geothermal power generation: Optimal retrofitting," Applied Energy, Elsevier, vol. 131(C), pages 158-170.
    34. Mikielewicz, Dariusz & Wajs, Jan & Ziółkowski, Paweł & Mikielewicz, Jarosław, 2016. "Utilisation of waste heat from the power plant by use of the ORC aided with bleed steam and extra source of heat," Energy, Elsevier, vol. 97(C), pages 11-19.
    35. Olabi, Abdul Ghani & Mahmoud, Montaser & Soudan, Bassel & Wilberforce, Tabbi & Ramadan, Mohamad, 2020. "Geothermal based hybrid energy systems, toward eco-friendly energy approaches," Renewable Energy, Elsevier, vol. 147(P1), pages 2003-2012.
    36. Ewa Chomać-Pierzecka & Anna Sobczak & Dariusz Soboń, 2022. "The Potential and Development of the Geothermal Energy Market in Poland and the Baltic States—Selected Aspects," Energies, MDPI, vol. 15(11), pages 1-20, June.
    37. Ziółkowski, Paweł & Badur, Janusz & Pawlak- Kruczek, Halina & Stasiak, Kamil & Amiri, Milad & Niedzwiecki, Lukasz & Krochmalny, Krystian & Mularski, Jakub & Madejski, Paweł & Mikielewicz, Dariusz, 2022. "Mathematical modelling of gasification process of sewage sludge in reactor of negative CO2 emission power plant," Energy, Elsevier, vol. 244(PA).
    38. Cloete, Schalk & Ruhnau, Oliver & Hirth, Lion, 2020. "On capital utilization in the hydrogen economy: The quest to minimize idle capacity in renewables-rich energy systems," EconStor Preprints 222474, ZBW - Leibniz Information Centre for Economics.
    39. Ciani Bassetti, Martina & Consoli, Daniele & Manente, Giovanni & Lazzaretto, Andrea, 2018. "Design and off-design models of a hybrid geothermal-solar power plant enhanced by a thermal storage," Renewable Energy, Elsevier, vol. 128(PB), pages 460-472.
    40. Bruhn, Matthias, 2002. "Hybrid geothermal–fossil electricity generation from low enthalpy geothermal resources: geothermal feedwater preheating in conventional power plants," Energy, Elsevier, vol. 27(4), pages 329-346.
    41. Vasiliki Tzelepi & Myrto Zeneli & Dimitrios-Sotirios Kourkoumpas & Emmanouil Karampinis & Antonios Gypakis & Nikos Nikolopoulos & Panagiotis Grammelis, 2020. "Biomass Availability in Europe as an Alternative Fuel for Full Conversion of Lignite Power Plants: A Critical Review," Energies, MDPI, vol. 13(13), pages 1-26, July.
    42. Joanna Boguniewicz-Zabłocka & Ewelina Łukasiewicz & Domenico Guida, 2019. "Analysis of the Sustainable Use of Geothermal Waters and Future Development Possibilities—A Case Study from the Opole Region, Poland," Sustainability, MDPI, vol. 11(23), pages 1-15, November.
    43. Alistair T. McCay & Thomas L. Harley & Paul L. Younger & David C. W. Sanderson & Alan J. Cresswell, 2014. "Gamma-ray Spectrometry in Geothermal Exploration: State of the Art Techniques," Energies, MDPI, vol. 7(8), pages 1-24, July.
    44. Lucjan Sajkowski & Rose Turnbull & Karyne Rogers, 2023. "A Review of Critical Element Concentrations in High Enthalpy Geothermal Fluids in New Zealand," Resources, MDPI, vol. 12(6), pages 1-15, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Semmari, Hamza & Bouaicha, Foued & Aberkane, Sofiane & Filali, Abdelkader & Blessent, Daniela & Badache, Messaoud, 2024. "Geological context and thermo-economic study of an indirect heat ORC geothermal power plant for the northeast region of Algeria," Energy, Elsevier, vol. 290(C).
    2. Boukelia, T.E. & Arslan, O. & Djimli, S. & Kabar, Y., 2023. "ORC fluids selection for a bottoming binary geothermal power plant integrated with a CSP plant," Energy, Elsevier, vol. 265(C).
    3. Zhang, Hongsheng & Hao, Ruijun & Liu, Xingang & Zhang, Ning & Guo, Wenli & Zhang, Zhenghui & Liu, Chengjun & Liu, Yifeng & Duan, Chenghong & Qin, Jiyun, 2022. "Thermodynamic performance analysis of an improved coal-fired power generation system coupled with geothermal energy based on organic Rankine cycle," Renewable Energy, Elsevier, vol. 201(P1), pages 273-290.
    4. Liu, Guokun & Ji, Dongxu & Qin, Yanzhou, 2023. "Geothermal-solar energy system integrated with hydrogen production and utilization modules for power supply-demand balancing," Energy, Elsevier, vol. 283(C).
    5. Boukelia, T.E. & Arslan, O. & Bouraoui, A., 2021. "Thermodynamic performance assessment of a new solar tower-geothermal combined power plant compared to the conventional solar tower power plant," Energy, Elsevier, vol. 232(C).
    6. Hu, Shuozhuo & Yang, Zhen & Li, Jian & Duan, Yuanyuan, 2022. "Optimal solar thermal retrofit for geothermal power systems considering the lifetime brine degradation," Renewable Energy, Elsevier, vol. 186(C), pages 628-645.
    7. Olabi, Abdul Ghani & Mahmoud, Montaser & Soudan, Bassel & Wilberforce, Tabbi & Ramadan, Mohamad, 2020. "Geothermal based hybrid energy systems, toward eco-friendly energy approaches," Renewable Energy, Elsevier, vol. 147(P1), pages 2003-2012.
    8. Li, Huabin & Tao, Ye & Zhang, Yang & Fu, Hong, 2022. "Two-objective optimization of a hybrid solar-geothermal system with thermal energy storage for power, hydrogen and freshwater production based on transcritical CO2 cycle," Renewable Energy, Elsevier, vol. 183(C), pages 51-66.
    9. Yanara Tranamil-Maripe & José M. Cardemil & Rodrigo Escobar & Diego Morata & Cristóbal Sarmiento-Laurel, 2022. "Assessing the Hybridization of an Existing Geothermal Plant by Coupling a CSP System for Increasing Power Generation," Energies, MDPI, vol. 15(6), pages 1-28, March.
    10. Wang, Gang & Zhang, Zhen & Lin, Jianqing, 2024. "Multi-energy complementary power systems based on solar energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    11. Ziółkowski, Paweł & Stasiak, Kamil & Amiri, Milad & Mikielewicz, Dariusz, 2023. "Negative carbon dioxide gas power plant integrated with gasification of sewage sludge," Energy, Elsevier, vol. 262(PB).
    12. Mahmoud, Montaser & Alkhedher, Mohammad & Ramadan, Mohamad & Naher, Sumsun & Pullen, Keith, 2022. "An investigation on organic Rankine cycle incorporating a ground-cooled condenser: Working fluid selection and regeneration," Energy, Elsevier, vol. 249(C).
    13. Powell, Kody M. & Rashid, Khalid & Ellingwood, Kevin & Tuttle, Jake & Iverson, Brian D., 2017. "Hybrid concentrated solar thermal power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 215-237.
    14. Mohammadzadeh Bina, Saeid & Jalilinasrabady, Saeid & Fujii, Hikari, 2017. "Energy, economic and environmental (3E) aspects of internal heat exchanger for ORC geothermal power plants," Energy, Elsevier, vol. 140(P1), pages 1096-1106.
    15. Dominika Matuszewska & Marta Kuta & Piotr Olczak, 2020. "Techno-Economic Assessment of Mobilized Thermal Energy Storage System Using Geothermal Source in Polish Conditions," Energies, MDPI, vol. 13(13), pages 1-24, July.
    16. Tian, Xueyu & You, Fengqi, 2019. "Carbon-neutral hybrid energy systems with deep water source cooling, biomass heating, and geothermal heat and power," Applied Energy, Elsevier, vol. 250(C), pages 413-432.
    17. Zhao, Yajing & Wang, Jiangfeng, 2016. "Exergoeconomic analysis and optimization of a flash-binary geothermal power system," Applied Energy, Elsevier, vol. 179(C), pages 159-170.
    18. Reyes-Antonio, Claudio Antonio & Iglesias-Silva, Gustavo Arturo & Rubio-Maya, Carlos & Fuentes-Cortés, Luis Fabián, 2024. "Multi-objective design of off-grid low-enthalpy geothermal generation systems considering partial-load operations," Energy, Elsevier, vol. 294(C).
    19. Agnieszka Operacz & Agnieszka Zachora-Buławska & Izabela Strzelecka & Mariusz Buda & Bogusław Bielec & Karolina Migdał & Tomasz Operacz, 2022. "The Standard Geothermal Plant as an Innovative Combined Renewable Energy Resources System: The Case from South Poland," Energies, MDPI, vol. 15(17), pages 1-23, September.
    20. Ciani Bassetti, Martina & Consoli, Daniele & Manente, Giovanni & Lazzaretto, Andrea, 2018. "Design and off-design models of a hybrid geothermal-solar power plant enhanced by a thermal storage," Renewable Energy, Elsevier, vol. 128(PB), pages 460-472.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:299:y:2024:i:c:s0360544224011551. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.