IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i8p1426-d222565.html
   My bibliography  Save this article

Theoretical and Numerical Analysis of Freezing Risk During LNG Evaporation Process

Author

Listed:
  • Zbigniew Rogala

    (Department of Cryogenic, Aeronautic and Process Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland)

  • Arkadiusz Brenk

    (Department of Cryogenic, Aeronautic and Process Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland)

  • Ziemowit Malecha

    (Department of Cryogenic, Aeronautic and Process Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland)

Abstract

The liquid natural gas (LNG) boiling process concerns most LNG applications due to a need for regasification. Depending on the pressure, the equilibrium temperature of LNG is 112–160 K. The low boiling temperature of LNG makes the vaporization process challenging because of a large temperature difference between the heating medium and LNG. A significant risk included in the regasification process is related to the possibility of solid phase formation (freezing of the heating fluid). A solid phase formation can lead to an increase in pressure loss, deterioration in heat transfer, or even to the destruction of the heat exchanger. This prompts the need for a better understanding of the heat transfer during the regasification process to help avoid a solid phase formation. The present research is focused on the investigation of the mutual interactions between several parameters, which play a significant role in the regasification process. The research is based on a zero-dimensional (0D) model, which was validated through the comparison with a state-of-the-art Computational Fluid Dynamics (CFD) model. This made fast calculations and the study of the risk of freezing for a wide range of parameter space possible, including the LNG boiling regime. The boiling regime of LNG was shown to be a key factor in determining the risk of freezing.

Suggested Citation

  • Zbigniew Rogala & Arkadiusz Brenk & Ziemowit Malecha, 2019. "Theoretical and Numerical Analysis of Freezing Risk During LNG Evaporation Process," Energies, MDPI, vol. 12(8), pages 1-19, April.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1426-:d:222565
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/8/1426/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/8/1426/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kumar, Satish & Kwon, Hyouk-Tae & Choi, Kwang-Ho & Lim, Wonsub & Cho, Jae Hyun & Tak, Kyungjae & Moon, Il, 2011. "LNG: An eco-friendly cryogenic fuel for sustainable development," Applied Energy, Elsevier, vol. 88(12), pages 4264-4273.
    2. Ebrahimi, Armin & Ziabasharhagh, Masoud, 2017. "Optimal design and integration of a cryogenic Air Separation Unit (ASU) with Liquefied Natural Gas (LNG) as heat sink, thermodynamic and economic analyses," Energy, Elsevier, vol. 126(C), pages 868-885.
    3. La Rocca, Vincenzo, 2010. "Cold recovery during regasification of LNG part one: Cold utilization far from the regasification facility," Energy, Elsevier, vol. 35(5), pages 2049-2058.
    4. Tan, Hongbo & Li, Yanzhong & Tuo, Hanfei & Zhou, Man & Tian, Baocong, 2010. "Experimental study on liquid/solid phase change for cold energy storage of Liquefied Natural Gas (LNG) refrigerated vehicle," Energy, Elsevier, vol. 35(5), pages 1927-1935.
    5. Paltrinieri, Nicola & Tugnoli, Alessandro & Cozzani, Valerio, 2015. "Hazard identification for innovative LNG regasification technologies," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 18-28.
    6. Arkadiusz Brenk & Pawel Pluszka & Ziemowit Malecha, 2018. "Numerical Study of Flow Maldistribution in Multi-Plate Heat Exchangers Based on Robust 2D Model," Energies, MDPI, vol. 11(11), pages 1-17, November.
    7. Arteconi, A. & Brandoni, C. & Evangelista, D. & Polonara, F., 2010. "Life-cycle greenhouse gas analysis of LNG as a heavy vehicle fuel in Europe," Applied Energy, Elsevier, vol. 87(6), pages 2005-2013, June.
    8. He, Tianbiao & Nair, Sajitha K. & Babu, Ponnivalavan & Linga, Praveen & Karimi, Iftekhar A., 2018. "A novel conceptual design of hydrate based desalination (HyDesal) process by utilizing LNG cold energy," Applied Energy, Elsevier, vol. 222(C), pages 13-24.
    9. La Rocca, Vincenzo, 2011. "Cold recovery during regasification of LNG part two: Applications in an Agro Food Industry and a Hypermarket," Energy, Elsevier, vol. 36(8), pages 4897-4908.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tomasz Piasecki & Artur Bejger & Andrzej Wieczorek, 2021. "Experimental Studies of Cargo Tank Cooldown in an LNG Carrier," European Research Studies Journal, European Research Studies Journal, vol. 0(3B), pages 886-895.
    2. Wang, Zhe & Cai, Wenjian & Han, Fenghui & Ji, Yulong & Li, Wenhua & Sundén, Bengt, 2019. "Feasibility study on a novel heat exchanger network for cryogenic liquid regasification with cooling capacity recovery: Theoretical and experimental assessments," Energy, Elsevier, vol. 181(C), pages 771-781.
    3. Tomasz Banaszkiewicz & Maciej Chorowski & Wojciech Gizicki & Artur Jedrusyna & Jakub Kielar & Ziemowit Malecha & Agnieszka Piotrowska & Jaroslaw Polinski & Zbigniew Rogala & Korneliusz Sierpowski & Ja, 2020. "Liquefied Natural Gas in Mobile Applications—Opportunities and Challenges," Energies, MDPI, vol. 13(21), pages 1-35, October.
    4. Muhammad Abdul Qyyum & Muhammad Yasin & Alam Nawaz & Tianbiao He & Wahid Ali & Junaid Haider & Kinza Qadeer & Abdul-Sattar Nizami & Konstantinos Moustakas & Moonyong Lee, 2020. "Single-Solution-Based Vortex Search Strategy for Optimal Design of Offshore and Onshore Natural Gas Liquefaction Processes," Energies, MDPI, vol. 13(7), pages 1-22, April.
    5. Zhongchao Zhao & Yimeng Zhou & Xiaolong Ma & Xudong Chen & Shilin Li & Shan Yang, 2019. "Effect of Different Zigzag Channel Shapes of PCHEs on Heat Transfer Performance of Supercritical LNG," Energies, MDPI, vol. 12(11), pages 1-15, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Atienza-Márquez, Antonio & Bruno, Joan Carles & Akisawa, Atsushi & Nakayama, Masayuki & Coronas, Alberto, 2019. "Fluids selection and performance analysis of a polygeneration plant with exergy recovery from LNG-regasification," Energy, Elsevier, vol. 176(C), pages 1020-1036.
    2. He, Tianbiao & Chong, Zheng Rong & Zheng, Junjie & Ju, Yonglin & Linga, Praveen, 2019. "LNG cold energy utilization: Prospects and challenges," Energy, Elsevier, vol. 170(C), pages 557-568.
    3. Atienza-Márquez, Antonio & Bruno, Joan Carles & Akisawa, Atsushi & Coronas, Alberto, 2019. "Performance analysis of a combined cold and power (CCP) system with exergy recovery from LNG-regasification," Energy, Elsevier, vol. 183(C), pages 448-461.
    4. Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).
    5. Yuan, Zhiyi & Ou, Xunmin & Peng, Tianduo & Yan, Xiaoyu, 2019. "Life cycle greenhouse gas emissions of multi-pathways natural gas vehicles in china considering methane leakage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Li, Yongyi & Liu, Yujia & Zhang, Guoqiang & Yang, Yongping, 2020. "Thermodynamic analysis of a novel combined cooling and power system utilizing liquefied natural gas (LNG) cryogenic energy and low-temperature waste heat," Energy, Elsevier, vol. 199(C).
    7. Valerie Eveloy & Dereje S. Ayou, 2019. "Sustainable District Cooling Systems: Status, Challenges, and Future Opportunities, with Emphasis on Cooling-Dominated Regions," Energies, MDPI, vol. 12(2), pages 1-64, January.
    8. Raslavičius, Laurencas & Keršys, Artūras & Mockus, Saulius & Keršienė, Neringa & Starevičius, Martynas, 2014. "Liquefied petroleum gas (LPG) as a medium-term option in the transition to sustainable fuels and transport," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 513-525.
    9. Osorio-Tejada, Jose Luis & Llera-Sastresa, Eva & Scarpellini, Sabina, 2017. "Liquefied natural gas: Could it be a reliable option for road freight transport in the EU?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 785-795.
    10. Park, Jinwoo & You, Fengqi & Cho, Hyungtae & Lee, Inkyu & Moon, Il, 2020. "Novel massive thermal energy storage system for liquefied natural gas cold energy recovery," Energy, Elsevier, vol. 195(C).
    11. Seo, Suwon & Han, Sangheon & Lee, Sangick & Chang, Daejun, 2016. "A pump-free boosting system and its application to liquefied natural gas supply for large ships," Energy, Elsevier, vol. 105(C), pages 70-79.
    12. Seungyeop Baek & Wontak Choi & Gyuchang Kim & Jaedeok Seo & Sanggon Lee & Hyomin Jeong & Yonmo Sung, 2022. "Liquefied Natural Gas Cold Energy Utilization for Land-Based Cold Water Fish Aquaculture in South Korea," Energies, MDPI, vol. 15(19), pages 1-13, October.
    13. Pfoser, Sarah & Schauer, Oliver & Costa, Yasel, 2018. "Acceptance of LNG as an alternative fuel: Determinants and policy implications," Energy Policy, Elsevier, vol. 120(C), pages 259-267.
    14. Md Arman Arefin & Md Nurun Nabi & Md Washim Akram & Mohammad Towhidul Islam & Md Wahid Chowdhury, 2020. "A Review on Liquefied Natural Gas as Fuels for Dual Fuel Engines: Opportunities, Challenges and Responses," Energies, MDPI, vol. 13(22), pages 1-19, November.
    15. Baccanelli, Margaret & Langé, Stefano & Rocco, Matteo V. & Pellegrini, Laura A. & Colombo, Emanuela, 2016. "Low temperature techniques for natural gas purification and LNG production: An energy and exergy analysis," Applied Energy, Elsevier, vol. 180(C), pages 546-559.
    16. Stettler, Marc E.J. & Woo, Mino & Ainalis, Daniel & Achurra-Gonzalez, Pablo & Speirs, Jamie & Cooper, Jasmin & Lim, Dong-Ha & Brandon, Nigel & Hawkes, Adam, 2023. "Review of Well-to-Wheel lifecycle emissions of liquefied natural gas heavy goods vehicles," Applied Energy, Elsevier, vol. 333(C).
    17. Sun, Heng & Zhu, Hongmei & Liu, Feng & Ding, He, 2014. "Simulation and optimization of a novel Rankine power cycle for recovering cold energy from liquefied natural gas using a mixed working fluid," Energy, Elsevier, vol. 70(C), pages 317-324.
    18. Zhang, Shaojun & Wu, Ye & Hu, Jingnan & Huang, Ruikun & Zhou, Yu & Bao, Xiaofeng & Fu, Lixin & Hao, Jiming, 2014. "Can Euro V heavy-duty diesel engines, diesel hybrid and alternative fuel technologies mitigate NOX emissions? New evidence from on-road tests of buses in China," Applied Energy, Elsevier, vol. 132(C), pages 118-126.
    19. Sun, Shouheng & Ertz, Myriam, 2022. "Life cycle assessment and risk assessment of liquefied natural gas vehicles promotion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    20. García, Ramón Ferreiro & Carril, Jose Carbia & Gomez, Javier Romero & Gomez, Manuel Romero, 2016. "Combined cascaded Rankine and direct expander based power units using LNG (liquefied natural gas) cold as heat sink in LNG regasification," Energy, Elsevier, vol. 105(C), pages 16-24.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:8:p:1426-:d:222565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.