IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p3121-d182155.html
   My bibliography  Save this article

Numerical Study of Flow Maldistribution in Multi-Plate Heat Exchangers Based on Robust 2D Model

Author

Listed:
  • Arkadiusz Brenk

    (Department of Cryogenic, Aeronautic and Process Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland)

  • Pawel Pluszka

    (Department of Cryogenic, Aeronautic and Process Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland)

  • Ziemowit Malecha

    (Department of Cryogenic, Aeronautic and Process Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland)

Abstract

Plate heat exchangers (PHE) are characterized by high heat transfer efficiency and compactness. An exploitation problem of the PHE is related to flow maldistribution, which can make part of the PHE idle, resulting in overheating and damage. Making geometrical modifications to the PHE can help reduce flow maldistribution. Modifications should be kept to a minimum, so as not to complicate the production process. There is a large number of possible geometrical modifications, which simply considers additional obstacles or stream dividers. To test all of them would be impractical and would also take a prohibitively long amount of time to obtain experimental measurements. A typical PHE is characterized by a complex system of channels. Making numerical calculations of its 3D model can be prohibitively time and resource-consuming. The present work introduces a physically consistent methodology of the transformation of a real 3D geometry to its 2D representation. Its main novelty is to assure the same pressure drop balance remains between the 3D and 2D geometries. This is achieved by a preservation of the same cumulative pressure losses in both geometries. The proposed innovative approach levels the pressure balance difference by adding properly designed local geometrical modifications. The developed methodology allowed a wide range of parameter space and various geometrical modifications to be investigated, and revealed geometrical optimizations leading to the improved performance of the PHE. To minimize the influence of other factors, an incompressible and single-phase flow was studied.

Suggested Citation

  • Arkadiusz Brenk & Pawel Pluszka & Ziemowit Malecha, 2018. "Numerical Study of Flow Maldistribution in Multi-Plate Heat Exchangers Based on Robust 2D Model," Energies, MDPI, vol. 11(11), pages 1-17, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3121-:d:182155
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/3121/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/3121/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Peilun Wang & Dacheng Li & Yun Huang & Xingang Zheng & Yi Wang & Zhijian Peng & Yulong Ding, 2016. "Numerical Study of Solidification in a Plate Heat Exchange Device with a Zigzag Configuration Containing Multiple Phase-Change-Materials," Energies, MDPI, vol. 9(6), pages 1-17, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kyung Rae Kim & Jae Keun Lee & Hae Do Jeong & Yul Ho Kang & Young Chull Ahn, 2020. "Numerical and Experimental Study of Air-to-Air Plate Heat Exchangers with Plain and Offset Strip Fin Shapes," Energies, MDPI, vol. 13(21), pages 1-13, October.
    2. Maciej Chorowski & Piotr Pyrka & Zbigniew Rogala & Piotr Czupryński, 2019. "Experimental Study of Performance Improvement of 3-Bed and 2-Evaporator Adsorption Chiller by Control Optimization," Energies, MDPI, vol. 12(20), pages 1-17, October.
    3. Zbigniew Rogala & Arkadiusz Brenk & Ziemowit Malecha, 2019. "Theoretical and Numerical Analysis of Freezing Risk During LNG Evaporation Process," Energies, MDPI, vol. 12(8), pages 1-19, April.
    4. Xiang Peng & Denghong Li & Jiquan Li & Shaofei Jiang & Qilong Gao, 2020. "Improvement of Flow Distribution by New Inlet Header Configuration with Splitter Plates for Plate-Fin Heat Exchanger," Energies, MDPI, vol. 13(6), pages 1-14, March.
    5. Hyung Ju Lee & Seong Hyuk Lee, 2020. "Effect of Secondary Vortex Flow Near Contact Point on Thermal Performance in the Plate Heat Exchanger with Different Corrugation Profiles," Energies, MDPI, vol. 13(6), pages 1-13, March.
    6. Tomasz Banaszkiewicz & Maciej Chorowski & Wojciech Gizicki & Artur Jedrusyna & Jakub Kielar & Ziemowit Malecha & Agnieszka Piotrowska & Jaroslaw Polinski & Zbigniew Rogala & Korneliusz Sierpowski & Ja, 2020. "Liquefied Natural Gas in Mobile Applications—Opportunities and Challenges," Energies, MDPI, vol. 13(21), pages 1-35, October.
    7. Jeonggyun Ham & Gonghee Lee & Dong-wook Oh & Honghyun Cho, 2021. "Numerical Study on Non-Uniform Temperature Distribution and Thermal Performance of Plate Heat Exchanger," Energies, MDPI, vol. 14(24), pages 1-18, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinguo Sun & Jasim M. Mahdi & Hayder I. Mohammed & Hasan Sh. Majdi & Wang Zixiong & Pouyan Talebizadehsardari, 2021. "Solidification Enhancement in a Triple-Tube Latent Heat Energy Storage System Using Twisted Fins," Energies, MDPI, vol. 14(21), pages 1-23, November.
    2. Mohammadreza Ebrahimnataj Tiji & Jasim M. Mahdi & Hayder I. Mohammed & Hasan Sh. Majdi & Abbas Ebrahimi & Rohollah Babaei Mahani & Pouyan Talebizadehsardari & Wahiba Yaïci, 2021. "Natural Convection Effect on Solidification Enhancement in a Multi-Tube Latent Heat Storage System: Effect of Tubes’ Arrangement," Energies, MDPI, vol. 14(22), pages 1-23, November.
    3. Yi Zhang & Hongzhi Cui & Waiching Tang & Guochen Sang & Hong Wu, 2017. "Effect of Summer Ventilation on the Thermal Performance and Energy Efficiency of Buildings Utilizing Phase Change Materials," Energies, MDPI, vol. 10(8), pages 1-17, August.
    4. Ewelina Radomska & Lukasz Mika & Karol Sztekler & Lukasz Lis, 2020. "The Impact of Heat Exchangers’ Constructions on the Melting and Solidification Time of Phase Change Materials," Energies, MDPI, vol. 13(18), pages 1-44, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3121-:d:182155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.