IDEAS home Printed from https://ideas.repec.org/a/ers/journl/vxxivy2021i3-part2p886-895.html
   My bibliography  Save this article

Experimental Studies of Cargo Tank Cooldown in an LNG Carrier

Author

Listed:
  • Tomasz Piasecki
  • Artur Bejger
  • Andrzej Wieczorek

Abstract

Purpose: The paper aims to show and analyze the construction of LNG tanks, systems related to temperature measurement and to describe the operation of the system of cargo tank cooldown, including the design of pressure compensation between tank membranes. Design/Methodology/Approach: This paper presents an experimental study on practical cooling measurements of LNG ship cargo tanks. The measures were aimed at comparing the cooling procedures recommended by the manufacturer with the actual temperature changes occurring during the investigated process. Findings: Based on the own experience of one of the co-authors, the sequence of operations performed after the LNG carrier enters the loading terminal was refined. Procedures and recommendations, important from the point of view of cargo operation and crew safety, were preserved. Practical Implications: An analysis was made on safety procedures and potential problems that could arise during LNG trans-shipment. Tank cooldown takes place by delivering liquid methane to the spray pipelines embedded in the tanks. The authors' survey indicates that by lowering the tank temperature to -130°C (and below), excessive vapours can be avoided during the first critical minutes of loading. In some extraordinary circumstances ('warm' membranes), the number of produced vapours may be so large that shipboard facilities will not be able to carry away them to the terminal, pressure in the tanks will start to increase, and, in extreme cases, the pressure may get so high that emergency release of gas will be necessary. Originality/Value: Each ship has its cooldown tables, used for guidance in this operation. For tanks described in this article, the average value of cargo tanks temperature was used to calculate the time and quantity of liquid methane required for the cooling. The authors compared absolute temperatures recorded during the tank cooldown in the examined ship to temperatures specified in the manufacturer's tables. One should remember that the prerequisite for starting tank cooldown is to create or have a good atmosphere in tank inverting. The analysis presented in this article was performed on an LNG ship in continual operation, so the proper atmosphere was satisfied.

Suggested Citation

  • Tomasz Piasecki & Artur Bejger & Andrzej Wieczorek, 2021. "Experimental Studies of Cargo Tank Cooldown in an LNG Carrier," European Research Studies Journal, European Research Studies Journal, vol. 0(3 - Part ), pages 886-895.
  • Handle: RePEc:ers:journl:v:xxiv:y:2021:i:3-part2:p:886-895
    as

    Download full text from publisher

    File URL: https://ersj.eu/journal/2545/download
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ers:journl:v:xxiv:y:2021:i:3-part2:p:886-895. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Marios Agiomavritis (email available below). General contact details of provider: https://ersj.eu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.