A Review of Gasoline Compression Ignition: A Promising Technology Potentially Fueled with Mixtures of Gasoline and Biodiesel to Meet Future Engine Efficiency and Emission Targets
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Cordiner, Stefano & Mulone, Vincenzo & Nobile, Matteo & Rocco, Vittorio, 2016. "Impact of biodiesel fuel on engine emissions and Aftertreatment System operation," Applied Energy, Elsevier, vol. 164(C), pages 972-983.
- Lu, Xingcai & Qian, Yong & Yang, Zheng & Han, Dong & Ji, Jibin & Zhou, Xiaoxin & Huang, Zhen, 2014. "Experimental study on compound HCCI (homogenous charge compression ignition) combustion fueled with gasoline and diesel blends," Energy, Elsevier, vol. 64(C), pages 707-718.
- Misra, R.D. & Murthy, M.S., 2011. "Blending of additives with biodiesels to improve the cold flow properties, combustion and emission performance in a compression ignition engine--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2413-2422, June.
- Maurya, Rakesh Kumar & Agarwal, Avinash Kumar, 2013. "Experimental investigation of cyclic variations in HCCI combustion parameters for gasoline like fuels using statistical methods," Applied Energy, Elsevier, vol. 111(C), pages 310-323.
- Lawler, Benjamin & Splitter, Derek & Szybist, James & Kaul, Brian, 2017. "Thermally Stratified Compression Ignition: A new advanced low temperature combustion mode with load flexibility," Applied Energy, Elsevier, vol. 189(C), pages 122-132.
- Liu, Haoye & Wang, Zhi & Wang, Jianxin & He, Xin, 2016. "Improvement of emission characteristics and thermal efficiency in diesel engines by fueling gasoline/diesel/PODEn blends," Energy, Elsevier, vol. 97(C), pages 105-112.
- Huang, Haozhong & Zhou, Chengzhong & Liu, Qingsheng & Wang, Qingxin & Wang, Xueqiang, 2016. "An experimental study on the combustion and emission characteristics of a diesel engine under low temperature combustion of diesel/gasoline/n-butanol blends," Applied Energy, Elsevier, vol. 170(C), pages 219-231.
- Wang, Ying & Xiao, Fan & Zhao, Yuwei & Li, Dongchang & Lei, Xiong, 2015. "Study on cycle-by-cycle variations in a diesel engine with dimethyl ether as port premixing fuel," Applied Energy, Elsevier, vol. 143(C), pages 58-70.
- Tesfa, B. & Mishra, R. & Zhang, C. & Gu, F. & Ball, A.D., 2013. "Combustion and performance characteristics of CI (compression ignition) engine running with biodiesel," Energy, Elsevier, vol. 51(C), pages 101-115.
- Wang, Buyu & Wang, Zhi & Shuai, Shijin & Xu, Hongming, 2015. "Combustion and emission characteristics of Multiple Premixed Compression Ignition (MPCI) mode fuelled with different low octane gasolines," Applied Energy, Elsevier, vol. 160(C), pages 769-776.
- Şahin, Z. & Durgun, O. & Bayram, C., 2008. "Experimental investigation of gasoline fumigation in a single cylinder direct injection (DI) diesel engine," Energy, Elsevier, vol. 33(8), pages 1298-1310.
- Li, J. & Yang, W.M. & An, H. & Chou, S.K., 2015. "Modeling on blend gasoline/diesel fuel combustion in a direct injection diesel engine," Applied Energy, Elsevier, vol. 160(C), pages 777-783.
- Feng, Zehao & Zhan, Cheng & Tang, Chenglong & Yang, Ke & Huang, Zuohua, 2016. "Experimental investigation on spray and atomization characteristics of diesel/gasoline/ethanol blends in high pressure common rail injection system," Energy, Elsevier, vol. 112(C), pages 549-561.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Rodica Niculescu & Adrian Clenci & Victor Iorga-Siman, 2019. "Review on the Use of Diesel–Biodiesel–Alcohol Blends in Compression Ignition Engines," Energies, MDPI, vol. 12(7), pages 1-41, March.
- Myeongsu Yoon & Minsung Choi & Kijoong Kang & Chaeho Oh & Yeseul Park & Gyungmin Choi, 2022. "Effects of n-Heptane/Methane Blended Fuel on Ignition Delay Time in Pre-Mixed Compressed Combustion," Energies, MDPI, vol. 15(11), pages 1-18, June.
- Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Han, Dong & Zhai, Jiaqi & Duan, Yaozong & Wang, Chunhai & Huang, Zhen, 2018. "Nozzle effects on the injection characteristics of diesel and gasoline blends on a common rail system," Energy, Elsevier, vol. 153(C), pages 223-230.
- Liu, Junheng & Sun, Ping & Huang, He & Meng, Jian & Yao, Xiaohua, 2017. "Experimental investigation on performance, combustion and emission characteristics of a common-rail diesel engine fueled with polyoxymethylene dimethyl ethers-diesel blends," Applied Energy, Elsevier, vol. 202(C), pages 527-536.
- Huang, Haozhong & Zhou, Chengzhong & Liu, Qingsheng & Wang, Qingxin & Wang, Xueqiang, 2016. "An experimental study on the combustion and emission characteristics of a diesel engine under low temperature combustion of diesel/gasoline/n-butanol blends," Applied Energy, Elsevier, vol. 170(C), pages 219-231.
- Fang, Cheng & Ouyang, Minggao & Tunestal, Per & Yang, Fuyuan & Yang, Xiaofan, 2018. "Closed-loop combustion phase control for multiple combustion modes by multiple injections in a compression ignition engine fueled by gasoline-diesel mixture," Applied Energy, Elsevier, vol. 231(C), pages 816-825.
- Chen, Hao & Su, Xin & Li, Junhui & Zhong, Xianglin, 2019. "Effects of gasoline and polyoxymethylene dimethyl ethers blending in diesel on the combustion and emission of a common rail diesel engine," Energy, Elsevier, vol. 171(C), pages 981-999.
- Zhang, Yanzhi & Li, Zilong & Tamilselvan, Pachiannan & Jiang, Chenxu & He, Zhixia & Zhong, Wenjun & Qian, Yong & Wang, Qian & Lu, Xingcai, 2019. "Experimental study of combustion and emission characteristics of gasoline compression ignition (GCI) engines fueled by gasoline-hydrogenated catalytic biodiesel blends," Energy, Elsevier, vol. 187(C).
- Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Cheng, Qiang & Ahmad, Zeeshan & Kaario, Ossi & Martti, Larmi, 2019. "Cycle-to-cycle variations of dual-fuel combustion in an optically accessible engine," Applied Energy, Elsevier, vol. 254(C).
- Huang, Haozhong & Liu, Qingsheng & Teng, Wenwen & Pan, Mingzhang & Liu, Chang & Wang, Qingxin, 2018. "Improvement of combustion performance and emissions in diesel engines by fueling n-butanol/diesel/PODE3–4 mixtures," Applied Energy, Elsevier, vol. 227(C), pages 38-48.
- Huang, Haozhong & Zhu, Jizhen & Lv, Delin & Wei, Yaopeng & Zhu, Zhaojun & Yu, Binbin & Chen, Yingjie, 2018. "Development of a reduced n-heptane-n-butylbenzene-polycyclic aromatic hydrocarbon (PAH) mechanism for engine combustion simulation and soot prediction," Energy, Elsevier, vol. 165(PB), pages 90-105.
- Jia, Guorui & Wang, Hu & Tong, Laihui & Wang, Xiaofeng & Zheng, Zunqing & Yao, Mingfa, 2017. "Experimental and numerical studies on three gasoline surrogates applied in gasoline compression ignition (GCI) mode," Applied Energy, Elsevier, vol. 192(C), pages 59-70.
- Badra, Jihad & Viollet, Yoann & Elwardany, Ahmed & Im, Hong G. & Chang, Junseok, 2016. "Physical and chemical effects of low octane gasoline fuels on compression ignition combustion," Applied Energy, Elsevier, vol. 183(C), pages 1197-1208.
- Huang, Haozhong & Wang, Qingxin & Shi, Cheng & Liu, Qingsheng & Zhou, Chengzhong, 2016. "Comparative study of effects of pilot injection and fuel properties on low temperature combustion in diesel engine under a medium EGR rate," Applied Energy, Elsevier, vol. 179(C), pages 1194-1208.
- Wei, Haiqiao & Hua, Jianxiong & Pan, Mingzhang & Feng, Dengquan & Zhou, Lei & Pan, Jiaying, 2018. "Experimental investigation on knocking combustion characteristics of gasoline compression ignition engine," Energy, Elsevier, vol. 143(C), pages 624-633.
- Suh, Hyun Kyu & Lee, Chang Sik, 2016. "A review on atomization and exhaust emissions of a biodiesel-fueled compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1601-1620.
- Zhao, Wenbin & Li, Zilong & Huang, Guan & Zhang, Yaoyuan & Qian, Yong & Lu, Xingcai, 2020. "Experimental investigation of direct injection dual fuel of n-butanol and biodiesel on Intelligent Charge Compression Ignition (ICCI) Combustion mode," Applied Energy, Elsevier, vol. 266(C).
- Tamilselvan, P. & Nallusamy, N. & Rajkumar, S., 2017. "A comprehensive review on performance, combustion and emission characteristics of biodiesel fuelled diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1134-1159.
- Ali Diané & Gounkaou Woro Yomi & Sidiki Zongo & Tizane Daho & Hervé Jeanmart, 2023. "Characterization, at Partial Loads, of the Combustion and Emissions of a Dual-Fuel Engine Burning Diesel and a Lean Gas Surrogate," Energies, MDPI, vol. 16(15), pages 1-16, July.
- Duan, Xiongbo & Liu, Jingping & Yuan, Zhipeng & Guo, Genmiao & Liu, Qi & Tang, Qijun & Deng, Banglin & Guan, Jinhuan, 2018. "Experimental investigation of the effects of injection strategies on cycle-to-cycle variations of a DISI engine fueled with ethanol and gasoline blend," Energy, Elsevier, vol. 165(PB), pages 455-470.
- Liu, Xinlei & Wang, Hu & Wang, Xiaofeng & Zheng, Zunqing & Yao, Mingfa, 2017. "Experimental and modelling investigations of the diesel surrogate fuels in direct injection compression ignition combustion," Applied Energy, Elsevier, vol. 189(C), pages 187-200.
More about this item
Keywords
GCI; biodiesel; diesel; combustion; emission;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:2:p:238-:d:197513. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.