IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v33y2008i8p1298-1310.html
   My bibliography  Save this article

Experimental investigation of gasoline fumigation in a single cylinder direct injection (DI) diesel engine

Author

Listed:
  • Şahin, Z.
  • Durgun, O.
  • Bayram, C.

Abstract

In the presented study, the effects of gasoline fumigation have been investigated experimentally in a single cylinder direct injection (DI) diesel engine. Gasoline has been introduced into the inlet air flow using an elementary carburetor and no other modification on the engine has been done. The effects of 2%, 4%, 6%, 8% and 10% (by vol.) gasoline fumigation have been investigated experimentally at the speeds of (900–1600) (rpm) and at the selected compression ratios of (18–23). From the experimental results it is determined that by application of gasoline fumigation effective power output increases at the levels of 4–9%, effective efficiency increases by approximately 1.5–4% and specific fuel consumption decreases by approximately 1.5–4%. It is also determined that 4–6% fumigation ratio range is the most favorable percentage interval of gasoline at the selected compression ratios for this engine. Because cost of gasoline is higher than diesel fuel in Turkey as well as in many of the other countries and the decrease ratio of specific fuel consumption is low, gasoline fumigation is not economic for this engine. In the presented study, heat balance tests have also been performed for 18 and 21 compression ratios. The heat balance has been investigated experimentally in respect of effective power, heat rejected to the cooling water, heat lost through exhaust, and other losses (unaccounted-for losses). Heat lost through exhaust decreases until 4–6% gasoline fumigation ratios and after these fumigation ratios it starts to increase because of increasing exhaust gas temperature. Heat rejected to the cooling water decreases at low fumigation ratios, but at high fumigation ratios it increases. Other losses generally exhibit an increasing tendency at low fumigation ratios.

Suggested Citation

  • Şahin, Z. & Durgun, O. & Bayram, C., 2008. "Experimental investigation of gasoline fumigation in a single cylinder direct injection (DI) diesel engine," Energy, Elsevier, vol. 33(8), pages 1298-1310.
  • Handle: RePEc:eee:energy:v:33:y:2008:i:8:p:1298-1310
    DOI: 10.1016/j.energy.2008.02.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544208000649
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2008.02.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kouremenos, D.A. & Rakopoulos, C.D. & Kotsiopoulos, P., 1990. "Comparative performance and emission studies for vaporized diesel fuel and gasoline as supplements in swirl-chamber diesel engines," Energy, Elsevier, vol. 15(12), pages 1153-1160.
    2. Yüksel, F. & Ceviz, M.A., 2003. "Thermal balance of a four stroke SI engine operating on hydrogen as a supplementary fuel," Energy, Elsevier, vol. 28(11), pages 1069-1080.
    3. Taymaz, Imdat, 2006. "An experimental study of energy balance in low heat rejection diesel engine," Energy, Elsevier, vol. 31(2), pages 364-371.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jamuwa, D.K. & Sharma, D. & Soni, S.L., 2017. "Experimental investigation of performance, exhaust emission and combustion parameters of compression ignition engine with varying ethanol energy fractions," Energy, Elsevier, vol. 127(C), pages 544-557.
    2. Wu, Zhi-Jun & Yu, Xiao & Fu, Le-Zhong & Deng, Jun & Hu, Zong-Jie & Li, Li-Guang, 2014. "A high efficiency oxyfuel internal combustion engine cycle with water direct injection for waste heat recovery," Energy, Elsevier, vol. 70(C), pages 110-120.
    3. Bodisco, Timothy & Brown, Richard J., 2013. "Inter-cycle variability of in-cylinder pressure parameters in an ethanol fumigated common rail diesel engine," Energy, Elsevier, vol. 52(C), pages 55-65.
    4. Yanuandri Putrasari & Ocktaeck Lim, 2019. "A Review of Gasoline Compression Ignition: A Promising Technology Potentially Fueled with Mixtures of Gasoline and Biodiesel to Meet Future Engine Efficiency and Emission Targets," Energies, MDPI, vol. 12(2), pages 1-27, January.
    5. Chauhan, Bhupendra Singh & Kumar, Naveen & Pal, Shyam Sunder & Du Jun, Yong, 2011. "Experimental studies on fumigation of ethanol in a small capacity Diesel engine," Energy, Elsevier, vol. 36(2), pages 1030-1038.
    6. He, Maogang & Zhang, Xinxin & Zeng, Ke & Gao, Ke, 2011. "A combined thermodynamic cycle used for waste heat recovery of internal combustion engine," Energy, Elsevier, vol. 36(12), pages 6821-6829.
    7. Esteban, Bernat & Riba, Jordi-Roger & Baquero, Grau & Puig, Rita & Rius, Antoni, 2014. "Environmental assessment of small-scale production of wood chips as a fuel for residential heating boilers," Renewable Energy, Elsevier, vol. 62(C), pages 106-115.
    8. Adnan, R. & Masjuki, H.H. & Mahlia, T.M.I., 2012. "Performance and emission analysis of hydrogen fueled compression ignition engine with variable water injection timing," Energy, Elsevier, vol. 43(1), pages 416-426.
    9. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Raghavan, V. & Saravanan, C.G. & Lee, P.S. & Chua, K.J.E. & Chou, S.K., 2014. "Investigation of evaporation and engine characteristics of pine oil biofuel fumigated in the inlet manifold of a diesel engine," Applied Energy, Elsevier, vol. 115(C), pages 514-524.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fu, Jianqin & Liu, Jingping & Ren, Chengqin & Wang, Linjun & Deng, Banglin & Xu, Zhengxin, 2012. "An open steam power cycle used for IC engine exhaust gas energy recovery," Energy, Elsevier, vol. 44(1), pages 544-554.
    2. Fu, Jianqin & Liu, Jingping & Xu, Zhengxin & Ren, Chengqin & Deng, Banglin, 2013. "A combined thermodynamic cycle based on methanol dissociation for IC (internal combustion) engine exhaust heat recovery," Energy, Elsevier, vol. 55(C), pages 778-786.
    3. Abedin, M.J. & Masjuki, H.H. & Kalam, M.A. & Sanjid, A. & Rahman, S.M. Ashrafur & Masum, B.M., 2013. "Energy balance of internal combustion engines using alternative fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 20-33.
    4. Fu, Jianqin & Liu, Jingping & Feng, Renhua & Yang, Yanping & Wang, Linjun & Wang, Yong, 2013. "Energy and exergy analysis on gasoline engine based on mapping characteristics experiment," Applied Energy, Elsevier, vol. 102(C), pages 622-630.
    5. Yao, Zhi-Min & Qian, Zuo-Qin & Li, Rong & Hu, Eric, 2019. "Energy efficiency analysis of marine high-powered medium-speed diesel engine base on energy balance and exergy," Energy, Elsevier, vol. 176(C), pages 991-1006.
    6. Jagtap, Sharad P. & Pawar, Anand N. & Lahane, Subhash, 2020. "Improving the usability of biodiesel blend in low heat rejection diesel engine through combustion, performance and emission analysis," Renewable Energy, Elsevier, vol. 155(C), pages 628-644.
    7. Das, Amar Kumar & Hansdah, Dulari & Panda, Achyut Kumar, 2021. "Thermal balancing and exergetic performance evaluation of a compression ignition engine fuelled with waste plastic pyrolytic oil and different fuel additives," Energy, Elsevier, vol. 229(C).
    8. Bodisco, Timothy & Brown, Richard J., 2013. "Inter-cycle variability of in-cylinder pressure parameters in an ethanol fumigated common rail diesel engine," Energy, Elsevier, vol. 52(C), pages 55-65.
    9. Yao, Mingfa & Ma, Tianyu & Wang, Hu & Zheng, Zunqing & Liu, Haifeng & Zhang, Yan, 2018. "A theoretical study on the effects of thermal barrier coating on diesel engine combustion and emission characteristics," Energy, Elsevier, vol. 162(C), pages 744-752.
    10. Serge Nyallang Nyamsi & Ivan Tolj & Mykhaylo Lototskyy, 2019. "Metal Hydride Beds-Phase Change Materials: Dual Mode Thermal Energy Storage for Medium-High Temperature Industrial Waste Heat Recovery," Energies, MDPI, vol. 12(20), pages 1-27, October.
    11. Aghaali, Habib & Ångström, Hans-Erik, 2015. "A review of turbocompounding as a waste heat recovery system for internal combustion engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 813-824.
    12. Li, Yongliang & Sciacovelli, Adriano & Peng, Xiaodong & Radcliffe, Jonathan & Ding, Yulong, 2016. "Integrating compressed air energy storage with a diesel engine for electricity generation in isolated areas," Applied Energy, Elsevier, vol. 171(C), pages 26-36.
    13. Rattner, Alexander S. & Garimella, Srinivas, 2011. "Energy harvesting, reuse and upgrade to reduce primary energy usage in the USA," Energy, Elsevier, vol. 36(10), pages 6172-6183.
    14. Chintala, Venkateswarlu & Subramanian, K.A., 2014. "Assessment of maximum available work of a hydrogen fueled compression ignition engine using exergy analysis," Energy, Elsevier, vol. 67(C), pages 162-175.
    15. Wang, Shuofeng & Ji, Changwei & Zhang, Jian & Zhang, Bo, 2011. "Comparison of the performance of a spark-ignited gasoline engine blended with hydrogen and hydrogen–oxygen mixtures," Energy, Elsevier, vol. 36(10), pages 5832-5837.
    16. Dong, Guangyu & Morgan, Robert E. & Heikal, Morgan R., 2016. "Thermodynamic analysis and system design of a novel split cycle engine concept," Energy, Elsevier, vol. 102(C), pages 576-585.
    17. Calise, Francesco & de Notaristefani di Vastogirardi, Giulio & Dentice d'Accadia, Massimo & Vicidomini, Maria, 2018. "Simulation of polygeneration systems," Energy, Elsevier, vol. 163(C), pages 290-337.
    18. Martín, Jaime & Novella, Ricardo & García, Antonio & Carreño, Ricardo & Heuser, Benedikt & Kremer, Florian & Pischinger, Stefan, 2016. "Thermal analysis of a light-duty CI engine operating with diesel-gasoline dual-fuel combustion mode," Energy, Elsevier, vol. 115(P1), pages 1305-1319.
    19. Wu, Horng-Wen & Wu, Zhan-Yi, 2012. "Combustion characteristics and optimal factors determination with Taguchi method for diesel engines port-injecting hydrogen," Energy, Elsevier, vol. 47(1), pages 411-420.
    20. Rakopoulos, Dimitrios C. & Rakopoulos, Constantine D. & Giakoumis, Evangelos G. & Dimaratos, Athanasios M., 2012. "Characteristics of performance and emissions in high-speed direct injection diesel engine fueled with diethyl ether/diesel fuel blends," Energy, Elsevier, vol. 43(1), pages 214-224.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:33:y:2008:i:8:p:1298-1310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.