IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i14p2747-d249399.html
   My bibliography  Save this article

Impacts of Climate Change and Climate Variability on Hydropower Potential in Data-Scarce Regions Subjected to Multi-Decadal Variability

Author

Listed:
  • Pedro Arriagada

    (Environmental Engineering Department, Universidad de Concepción, Concepcion 4070386, Chile)

  • Bastien Dieppois

    (Centre for Agroecology, Water and Resilience (CAWR), Coventry University, Coventry CV1 5FB, UK
    Department of Oceanography, University of Cape Town, Rondebosch 7701, South Africa
    School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2SA, UK)

  • Moussa Sidibe

    (Centre for Agroecology, Water and Resilience (CAWR), Coventry University, Coventry CV1 5FB, UK)

  • Oscar Link

    (Civil Engineering Department, Faculty of Engineering, Universidad de Concepción, Concepcion 4070386, Chile)

Abstract

To achieve sustainable development of hydroelectric resources, it is necessary to understand their availability, variability, and the expected impacts of climate change. Current research has mainly focused on estimating hydropower potential or determining the optimal locations for hydropower projects without considering the variability and historical trends of the resources. Herein, the hydropower potential variability from reconstructed streamflow series estimated with a non-parametric gap-filling method and geographic information systems (GIS) techniques are analyzed. The relationships between hydropower and large-scale climate variability, expressed by sea surface temperature, are explored. Finally, we project hydropower potential through 2050 using 15 global circulation models with representative concentration pathway (RCP) 4.5. We used four watersheds in central Chile as a case study. The results show significant interannual and inter-basin hydropower potential variability, with decreasing trends over time modulated by alternating positive and negative decadal trends; these modulations exhibit greater intensities than the general trends and are attributable to climatic oscillations such as El Niño. Future scenarios indicate high hydropower availability and a possible over-investment in hydroelectric plants in two of the four studied watersheds. Results show the need to improve the current policies that promote hydropower development including hydropower resource variability in order to achieve optimal, sustainable hydropower development worldwide.

Suggested Citation

  • Pedro Arriagada & Bastien Dieppois & Moussa Sidibe & Oscar Link, 2019. "Impacts of Climate Change and Climate Variability on Hydropower Potential in Data-Scarce Regions Subjected to Multi-Decadal Variability," Energies, MDPI, vol. 12(14), pages 1-20, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2747-:d:249399
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/14/2747/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/14/2747/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Byman H. Hamududu & Ånund Killingtveit, 2016. "Hydropower Production in Future Climate Scenarios; the Case for the Zambezi River," Energies, MDPI, vol. 9(7), pages 1-18, June.
    2. Byman H. Hamududu & Ånund Killingtveit, 2016. "Hydropower Production in Future Climate Scenarios: The Case for Kwanza River, Angola," Energies, MDPI, vol. 9(5), pages 1-13, May.
    3. Engeland, Kolbjørn & Borga, Marco & Creutin, Jean-Dominique & François, Baptiste & Ramos, Maria-Helena & Vidal, Jean-Philippe, 2017. "Space-time variability of climate variables and intermittent renewable electricity production – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 600-617.
    4. M. Pollitt, 2004. "Electricity reform in Chile. Lessons for developing countries," Competition and Regulation in Network Industries, Intersentia, vol. 5(3), pages 221-263, September.
    5. Chilkoti, Vinod & Bolisetti, Tirupati & Balachandar, Ram, 2017. "Climate change impact assessment on hydropower generation using multi-model climate ensemble," Renewable Energy, Elsevier, vol. 109(C), pages 510-517.
    6. Turner, Sean W.D. & Hejazi, Mohamad & Kim, Son H. & Clarke, Leon & Edmonds, Jae, 2017. "Climate impacts on hydropower and consequences for global electricity supply investment needs," Energy, Elsevier, vol. 141(C), pages 2081-2090.
    7. Zhang, Xiao & Li, Hong-Yi & Deng, Zhiqun Daniel & Ringler, Claudia & Gao, Yang & Hejazi, Mohamad I. & Leung, L. Ruby, 2018. "Impacts of climate change, policy and Water-Energy-Food nexus on hydropower development," Renewable Energy, Elsevier, vol. 116(PA), pages 827-834.
    8. Barros, Regina Mambeli & Tiago Filho, Geraldo Lúcio, 2012. "Small hydropower and carbon credits revenue for an SHP project in national isolated and interconnected systems in Brazil," Renewable Energy, Elsevier, vol. 48(C), pages 27-34.
    9. Pablo E. Carvajal & Gabrial Anandarajah & Yacob Mulugetta & Olivier Dessens, 2017. "Assessing uncertainty of climate change impacts on long-term hydropower generation using the CMIP5 ensemble—the case of Ecuador," Climatic Change, Springer, vol. 144(4), pages 611-624, October.
    10. Richard H. Moss & Jae A. Edmonds & Kathy A. Hibbard & Martin R. Manning & Steven K. Rose & Detlef P. van Vuuren & Timothy R. Carter & Seita Emori & Mikiko Kainuma & Tom Kram & Gerald A. Meehl & John F, 2010. "The next generation of scenarios for climate change research and assessment," Nature, Nature, vol. 463(7282), pages 747-756, February.
    11. Michelle T. H. van Vliet & David Wiberg & Sylvain Leduc & Keywan Riahi, 2016. "Power-generation system vulnerability and adaptation to changes in climate and water resources," Nature Climate Change, Nature, vol. 6(4), pages 375-380, April.
    12. A. Palla & I. Gnecco & P. Barbera & M. Ivaldi & D. Caviglia, 2016. "An Integrated GIS Approach to Assess the Mini Hydropower Potential," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(9), pages 2979-2996, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gonzalez-Salazar, Miguel & Poganietz, Witold Roger, 2021. "Evaluating the complementarity of solar, wind and hydropower to mitigate the impact of El Niño Southern Oscillation in Latin America," Renewable Energy, Elsevier, vol. 174(C), pages 453-467.
    2. Bekker, A. & Van Dijk, M. & Niebuhr, C.M., 2022. "A review of low head hydropower at wastewater treatment works and development of an evaluation framework for South Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Jaewon Jung & Heechan Han & Kyunghun Kim & Hung Soo Kim, 2021. "Machine Learning-Based Small Hydropower Potential Prediction under Climate Change," Energies, MDPI, vol. 14(12), pages 1-10, June.
    4. Jaewon Jung & Sungeun Jung & Junhyeong Lee & Myungjin Lee & Hung Soo Kim, 2021. "Analysis of Small Hydropower Generation Potential: (2) Future Prospect of the Potential under Climate Change," Energies, MDPI, vol. 14(11), pages 1-26, May.
    5. Sungeun Jung & Younghye Bae & Jongsung Kim & Hongjun Joo & Hung Soo Kim & Jaewon Jung, 2021. "Analysis of Small Hydropower Generation Potential: (1) Estimation of the Potential in Ungaged Basins," Energies, MDPI, vol. 14(11), pages 1-20, May.
    6. Vanesa Rodríguez-Merchan & Claudia Ulloa-Tesser & Yannay Casas-Ledón, 2019. "Evaluation of the Water–Energy–Land Nexus (WELN) Using Exergy-Based Indicators: The Chilean Electricity System Case," Energies, MDPI, vol. 13(1), pages 1-20, December.
    7. Esteban Gil & Yerel Morales & Tomás Ochoa, 2021. "Addressing the Effects of Climate Change on Modeling Future Hydroelectric Energy Production in Chile," Energies, MDPI, vol. 14(1), pages 1-23, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jaewon Jung & Sungeun Jung & Junhyeong Lee & Myungjin Lee & Hung Soo Kim, 2021. "Analysis of Small Hydropower Generation Potential: (2) Future Prospect of the Potential under Climate Change," Energies, MDPI, vol. 14(11), pages 1-26, May.
    2. Zhong, Ruida & Zhao, Tongtiegang & He, Yanhu & Chen, Xiaohong, 2019. "Hydropower change of the water tower of Asia in 21st century: A case of the Lancang River hydropower base, upper Mekong," Energy, Elsevier, vol. 179(C), pages 685-696.
    3. Qin, Pengcheng & Xu, Hongmei & Liu, Min & Xiao, Chan & Forrest, Kate E. & Samuelsen, Scott & Tarroja, Brian, 2020. "Assessing concurrent effects of climate change on hydropower supply, electricity demand, and greenhouse gas emissions in the Upper Yangtze River Basin of China," Applied Energy, Elsevier, vol. 279(C).
    4. Jaewon Jung & Heechan Han & Kyunghun Kim & Hung Soo Kim, 2021. "Machine Learning-Based Small Hydropower Potential Prediction under Climate Change," Energies, MDPI, vol. 14(12), pages 1-10, June.
    5. Guerra, Omar J. & Tejada, Diego A. & Reklaitis, Gintaras V., 2019. "Climate change impacts and adaptation strategies for a hydro-dominated power system via stochastic optimization," Applied Energy, Elsevier, vol. 233, pages 584-598.
    6. Sungeun Jung & Younghye Bae & Jongsung Kim & Hongjun Joo & Hung Soo Kim & Jaewon Jung, 2021. "Analysis of Small Hydropower Generation Potential: (1) Estimation of the Potential in Ungaged Basins," Energies, MDPI, vol. 14(11), pages 1-20, May.
    7. Lucena, André F.P. & Hejazi, Mohamad & Vasquez-Arroyo, Eveline & Turner, Sean & Köberle, Alexandre C. & Daenzer, Kathryn & Rochedo, Pedro R.R. & Kober, Tom & Cai, Yongxia & Beach, Robert H. & Gernaat,, 2018. "Interactions between climate change mitigation and adaptation: The case of hydropower in Brazil," Energy, Elsevier, vol. 164(C), pages 1161-1177.
    8. Jonas Savelsberg & Moritz Schillinger & Ingmar Schlecht & Hannes Weigt, 2018. "The Impact of Climate Change on Swiss Hydropower," Sustainability, MDPI, vol. 10(7), pages 1-23, July.
    9. Zhang, Yi & Cheng, Chuntian & Yang, Tiantian & Jin, Xiaoyu & Jia, Zebin & Shen, Jianjian & Wu, Xinyu, 2022. "Assessment of climate change impacts on the hydro-wind-solar energy supply system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    10. Katarzyna Kubiak-Wójcicka & Leszek Szczęch, 2021. "Dynamics of Electricity Production against the Backdrop of Climate Change: A Case Study of Hydropower Plants in Poland," Energies, MDPI, vol. 14(12), pages 1-24, June.
    11. Patro, Epari Ritesh & De Michele, Carlo & Avanzi, Francesco, 2018. "Future perspectives of run-of-the-river hydropower and the impact of glaciers’ shrinkage: The case of Italian Alps," Applied Energy, Elsevier, vol. 231(C), pages 699-713.
    12. Pengcheng Qin & Hongmei Xu & Min Liu & Lüliu Liu & Chan Xiao & Iman Mallakpour & Matin Rahnamay Naeini & Kuolin Hsu & Soroosh Sorooshian, 2022. "Projected impacts of climate change on major dams in the Upper Yangtze River Basin," Climatic Change, Springer, vol. 170(1), pages 1-24, January.
    13. Byman H. Hamududu & Hambulo Ngoma, 2020. "Impacts of climate change on water resources availability in Zambia: implications for irrigation development," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 2817-2838, April.
    14. Paweł Tomczyk & Mirosław Wiatkowski, 2021. "The Effects of Hydropower Plants on the Physicochemical Parameters of the Bystrzyca River in Poland," Energies, MDPI, vol. 14(8), pages 1-29, April.
    15. Kirsten Halsnæs & Lisa Bay & Mads Lykke Dømgaard & Per Skougaard Kaspersen & Morten Andreas Dahl Larsen, 2020. "Accelerating Climate Service Development for Renewable Energy, Finance and Cities," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    16. Dulias Renata, 2022. "Anthropogenic and natural factors influencing African World Heritage sites," Environmental & Socio-economic Studies, Sciendo, vol. 10(3), pages 67-84, September.
    17. Marie-Noëlle WOILLEZ, 2019. "Revue de littérature sur le changement climatique au Maroc : observations, projections et impacts," Working Paper 7ae2aa2d-befc-471b-94be-9, Agence française de développement.
    18. Ding, Tao & Liang, Liang & Zhou, Kaile & Yang, Min & Wei, Yuqi, 2020. "Water-energy nexus: The origin, development and prospect," Ecological Modelling, Elsevier, vol. 419(C).
    19. Zhong, Ruida & Zhao, Tongtiegang & Chen, Xiaohong, 2021. "Evaluating the tradeoff between hydropower benefit and ecological interest under climate change: How will the water-energy-ecosystem nexus evolve in the upper Mekong basin?," Energy, Elsevier, vol. 237(C).
    20. J. Restrepo-Trujillo & Ricardo Moreno-Chuquen & Francy Nelly Jim nez-Garc a, 2020. "Strategies of Expansion for Electric Power Systems Based on Hydroelectric Plants in the Context of Climate Change: Case of Analysis of Colombia," International Journal of Energy Economics and Policy, Econjournals, vol. 10(6), pages 66-74.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2747-:d:249399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.