Machine Learning-Based Small Hydropower Potential Prediction under Climate Change
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Byman H. Hamududu & Ånund Killingtveit, 2016. "Hydropower Production in Future Climate Scenarios; the Case for the Zambezi River," Energies, MDPI, vol. 9(7), pages 1-18, June.
- Byman H. Hamududu & Ånund Killingtveit, 2016. "Hydropower Production in Future Climate Scenarios: The Case for Kwanza River, Angola," Energies, MDPI, vol. 9(5), pages 1-13, May.
- Wang, Hejia & Xiao, Weihua & Wang, Yicheng & Zhao, Yong & Lu, Fan & Yang, Mingzhi & Hou, Baodeng & Yang, Heng, 2019. "Assessment of the impact of climate change on hydropower potential in the Nanliujiang River basin of China," Energy, Elsevier, vol. 167(C), pages 950-959.
- Chilkoti, Vinod & Bolisetti, Tirupati & Balachandar, Ram, 2017. "Climate change impact assessment on hydropower generation using multi-model climate ensemble," Renewable Energy, Elsevier, vol. 109(C), pages 510-517.
- Marie Minville & François Brissette & Stéphane Krau & Robert Leconte, 2009. "Adaptation to Climate Change in the Management of a Canadian Water-Resources System Exploited for Hydropower," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(14), pages 2965-2986, November.
- Franziska Koch & Monika Prasch & Heike Bach & Wolfram Mauser & Florian Appel & Markus Weber, 2011. "How Will Hydroelectric Power Generation Develop under Climate Change Scenarios? A Case Study in the Upper Danube Basin," Energies, MDPI, vol. 4(10), pages 1-34, September.
- Frey, Gary W. & Linke, Deborah M., 2002. "Hydropower as a renewable and sustainable energy resource meeting global energy challenges in a reasonable way," Energy Policy, Elsevier, vol. 30(14), pages 1261-1265, November.
- Jaewon Jung & Sungeun Jung & Junhyeong Lee & Myungjin Lee & Hung Soo Kim, 2021. "Analysis of Small Hydropower Generation Potential: (2) Future Prospect of the Potential under Climate Change," Energies, MDPI, vol. 14(11), pages 1-26, May.
- Llamosas, Cecilia & Sovacool, Benjamin K., 2021. "The future of hydropower? A systematic review of the drivers, benefits and governance dynamics of transboundary dams," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
- Byman Hamududu & Aanund Killingtveit, 2012. "Assessing Climate Change Impacts on Global Hydropower," Energies, MDPI, vol. 5(2), pages 1-18, February.
- Pedro Arriagada & Bastien Dieppois & Moussa Sidibe & Oscar Link, 2019. "Impacts of Climate Change and Climate Variability on Hydropower Potential in Data-Scarce Regions Subjected to Multi-Decadal Variability," Energies, MDPI, vol. 12(14), pages 1-20, July.
- Pablo E. Carvajal & Gabrial Anandarajah & Yacob Mulugetta & Olivier Dessens, 2017. "Assessing uncertainty of climate change impacts on long-term hydropower generation using the CMIP5 ensemble—the case of Ecuador," Climatic Change, Springer, vol. 144(4), pages 611-624, October.
- Kuriqi, Alban & Pinheiro, António N. & Sordo-Ward, Alvaro & Bejarano, María D. & Garrote, Luis, 2021. "Ecological impacts of run-of-river hydropower plants—Current status and future prospects on the brink of energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
- Fan, Jing-Li & Hu, Jia-Wei & Zhang, Xian & Kong, Ling-Si & Li, Fengyu & Mi, Zhifu, 2020. "Impacts of climate change on hydropower generation in China," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 167(C), pages 4-18.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Geoffrey Gasore & Arthur Santos & Etienne Ntagwirumugara & Daniel Zimmerle, 2023. "Sizing of Small Hydropower Plants for Highly Variable Flows in Tropical Run-of-River Installations: A Case Study of the Sebeya River," Energies, MDPI, vol. 16(3), pages 1-14, January.
- Adam Krechowicz & Maria Krechowicz & Katarzyna Poczeta, 2022. "Machine Learning Approaches to Predict Electricity Production from Renewable Energy Sources," Energies, MDPI, vol. 15(23), pages 1-41, December.
- Jongsung Kim & Myungjin Lee & Heechan Han & Donghyun Kim & Yunghye Bae & Hung Soo Kim, 2022. "Case Study: Development of the CNN Model Considering Teleconnection for Spatial Downscaling of Precipitation in a Climate Change Scenario," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
- Olivier Cleynen & Dennis Powalla & Stefan Hoerner & Dominique Thévenin, 2022. "An Efficient Method for Computing the Power Potential of Bypass Hydropower Installations," Energies, MDPI, vol. 15(9), pages 1-13, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jaewon Jung & Sungeun Jung & Junhyeong Lee & Myungjin Lee & Hung Soo Kim, 2021. "Analysis of Small Hydropower Generation Potential: (2) Future Prospect of the Potential under Climate Change," Energies, MDPI, vol. 14(11), pages 1-26, May.
- Sungeun Jung & Younghye Bae & Jongsung Kim & Hongjun Joo & Hung Soo Kim & Jaewon Jung, 2021. "Analysis of Small Hydropower Generation Potential: (1) Estimation of the Potential in Ungaged Basins," Energies, MDPI, vol. 14(11), pages 1-20, May.
- Pedro Arriagada & Bastien Dieppois & Moussa Sidibe & Oscar Link, 2019. "Impacts of Climate Change and Climate Variability on Hydropower Potential in Data-Scarce Regions Subjected to Multi-Decadal Variability," Energies, MDPI, vol. 12(14), pages 1-20, July.
- Zhong, Ruida & Zhao, Tongtiegang & He, Yanhu & Chen, Xiaohong, 2019. "Hydropower change of the water tower of Asia in 21st century: A case of the Lancang River hydropower base, upper Mekong," Energy, Elsevier, vol. 179(C), pages 685-696.
- Ewa Chomać-Pierzecka & Andrzej Kokiel & Joanna Rogozińska-Mitrut & Anna Sobczak & Dariusz Soboń & Jacek Stasiak, 2022. "Hydropower in the Energy Market in Poland and the Baltic States in the Light of the Challenges of Sustainable Development-An Overview of the Current State and Development Potential," Energies, MDPI, vol. 15(19), pages 1-19, October.
- Paweł Tomczyk & Mirosław Wiatkowski, 2021. "The Effects of Hydropower Plants on the Physicochemical Parameters of the Bystrzyca River in Poland," Energies, MDPI, vol. 14(8), pages 1-29, April.
- Qin, Pengcheng & Xu, Hongmei & Liu, Min & Xiao, Chan & Forrest, Kate E. & Samuelsen, Scott & Tarroja, Brian, 2020. "Assessing concurrent effects of climate change on hydropower supply, electricity demand, and greenhouse gas emissions in the Upper Yangtze River Basin of China," Applied Energy, Elsevier, vol. 279(C).
- Plaga, Leonie Sara & Bertsch, Valentin, 2023. "Methods for assessing climate uncertainty in energy system models — A systematic literature review," Applied Energy, Elsevier, vol. 331(C).
- Amirali Amir Jabbari & Ali Nazemi, 2019. "Alterations in Canadian Hydropower Production Potential Due to Continuation of Historical Trends in Climate Variables," Resources, MDPI, vol. 8(4), pages 1-29, September.
- Byman H. Hamududu & Hambulo Ngoma, 2020. "Impacts of climate change on water resources availability in Zambia: implications for irrigation development," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 2817-2838, April.
- Katarzyna Kubiak-Wójcicka & Leszek Szczęch, 2021. "Dynamics of Electricity Production against the Backdrop of Climate Change: A Case Study of Hydropower Plants in Poland," Energies, MDPI, vol. 14(12), pages 1-24, June.
- Maxime Binama & Kan Kan & Hui-Xiang Chen & Yuan Zheng & Da-Qing Zhou & Wen-Tao Su & Xin-Feng Ge & Janvier Ndayizigiye, 2021. "A Numerical Investigation into the PAT Hydrodynamic Response to Impeller Rotational Speed Variation," Sustainability, MDPI, vol. 13(14), pages 1-22, July.
- Esteban Gil & Yerel Morales & Tomás Ochoa, 2021. "Addressing the Effects of Climate Change on Modeling Future Hydroelectric Energy Production in Chile," Energies, MDPI, vol. 14(1), pages 1-23, January.
- Sebastian Naranjo-Silva & Diego Punina-Guerrero & Luis Rivera-Gonzalez & Kenny Escobar-Segovia & Jose David Barros-Enriquez & Jorge Armando Almeida-Dominguez & Javier Alvarez del Castillo, 2023. "Hydropower Scenarios in the Face of Climate Change in Ecuador," Sustainability, MDPI, vol. 15(13), pages 1-15, June.
- Turner, Sean W.D. & Hejazi, Mohamad & Kim, Son H. & Clarke, Leon & Edmonds, Jae, 2017. "Climate impacts on hydropower and consequences for global electricity supply investment needs," Energy, Elsevier, vol. 141(C), pages 2081-2090.
- Dulias Renata, 2022. "Anthropogenic and natural factors influencing African World Heritage sites," Environmental & Socio-economic Studies, Sciendo, vol. 10(3), pages 67-84, September.
- Zhang, Yi & Cheng, Chuntian & Yang, Tiantian & Jin, Xiaoyu & Jia, Zebin & Shen, Jianjian & Wu, Xinyu, 2022. "Assessment of climate change impacts on the hydro-wind-solar energy supply system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
- J. Restrepo-Trujillo & Ricardo Moreno-Chuquen & Francy Nelly Jim nez-Garc a, 2020. "Strategies of Expansion for Electric Power Systems Based on Hydroelectric Plants in the Context of Climate Change: Case of Analysis of Colombia," International Journal of Energy Economics and Policy, Econjournals, vol. 10(6), pages 66-74.
- Hunt, Julian David & Nascimento, Andreas & Caten, Carla Schwengber ten & Tomé, Fernanda Munari Caputo & Schneider, Paulo Smith & Thomazoni, André Luis Ribeiro & Castro, Nivalde José de & Brandão, Robe, 2022. "Energy crisis in Brazil: Impact of hydropower reservoir level on the river flow," Energy, Elsevier, vol. 239(PA).
- de Queiroz, Anderson Rodrigo & Faria, Victor A.D. & Lima, Luana M.M. & Lima, José W.M., 2019. "Hydropower revenues under the threat of climate change in Brazil," Renewable Energy, Elsevier, vol. 133(C), pages 873-882.
More about this item
Keywords
artificial neural network; climate change; hydropower potential; small hydropower;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:12:p:3643-:d:577680. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.