IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2019i1p42-d300014.html
   My bibliography  Save this article

Evaluation of the Water–Energy–Land Nexus (WELN) Using Exergy-Based Indicators: The Chilean Electricity System Case

Author

Listed:
  • Vanesa Rodríguez-Merchan

    (Faculty of Engineering, University of Concepción, Concepción 4030000, Chile)

  • Claudia Ulloa-Tesser

    (Environmental Engineering Department, Faculty of Environmental Sciences-EULA Center, University of Concepción, Concepción 4030000, Chile)

  • Yannay Casas-Ledón

    (Environmental Engineering Department, Faculty of Environmental Sciences-EULA Center, University of Concepción, Concepción 4030000, Chile)

Abstract

The competition and interlinkages between energy, water, and land resources are increasing globally and are exacerbated by climate change and a rapid increase in the world population. The nexus concept has emerged for a comprehensive understanding related to the management and efficiency of resource use. This paper assesses water–energy–land nexus (WELN) efficiency through integration of the principles of Life Cycle Assessment (LCA) and exergy analysis, using the Chilean energy sector (CES) as a study case. The cumulative exergy consumption (CExC) and cumulative degree of perfection (CDP) are used as indicators for WELN efficiency. The results show the production of 1 MWh of electricity required 17.3 GJ ex , with the energy component of WELN (fossil and renewable energy sources) being the main contributor (99%). Furthermore, the renewable energy technologies depicted higher CDP of the water–energy–land nexus due to lower CExC and higher technology efficiency concerning non-renewables. The water and land resources contributed slightly to total exergy flow due to low quality in comparison with the energy component. Nevertheless, water availability and competition for land occupation constitute important issues for reducing environmental pressures and local conflicts. This study demonstrated the feasibility of exergy analysis for the evaluation of WELN efficiency through a single indicator, which could facilitate the comparison and integration with different processes and multi-scales.

Suggested Citation

  • Vanesa Rodríguez-Merchan & Claudia Ulloa-Tesser & Yannay Casas-Ledón, 2019. "Evaluation of the Water–Energy–Land Nexus (WELN) Using Exergy-Based Indicators: The Chilean Electricity System Case," Energies, MDPI, vol. 13(1), pages 1-20, December.
  • Handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:42-:d:300014
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/1/42/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/1/42/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bilgen, Selçuk & Sarıkaya, İkbal, 2015. "Exergy for environment, ecology and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1115-1131.
    2. Lee, Mengshan & Keller, Arturo A. & Chiang, Pen-Chi & Den, Walter & Wang, Hongtao & Hou, Chia-Hung & Wu, Jiang & Wang, Xin & Yan, Jinyue, 2017. "Water-energy nexus for urban water systems: A comparative review on energy intensity and environmental impacts in relation to global water risks," Applied Energy, Elsevier, vol. 205(C), pages 589-601.
    3. Wang, Saige & Chen, Bin, 2016. "Energy–water nexus of urban agglomeration based on multiregional input–output tables and ecological network analysis: A case study of the Beijing–Tianjin–Hebei region," Applied Energy, Elsevier, vol. 178(C), pages 773-783.
    4. Destek, Mehmet & Sinha, Avik, 2020. "Renewable, non-renewable energy consumption, economic growth, trade openness and ecological footprint: Evidence from organisation for economic Co-operation and development countries," MPRA Paper 104246, University Library of Munich, Germany, revised 2020.
    5. Guan, Shihui & Han, Mengyao & Wu, Xiaofang & Guan, ChengHe & Zhang, Bo, 2019. "Exploring energy-water-land nexus in national supply chains: China 2012," Energy, Elsevier, vol. 185(C), pages 1225-1234.
    6. Dhakouani, Asma & Znouda, Essia & Bouden, Chiheb, 2019. "Impacts of energy efficiency policies on the integration of renewable energy," Energy Policy, Elsevier, vol. 133(C).
    7. Jesuina Chipindula & Venkata Sai Vamsi Botlaguduru & Hongbo Du & Raghava Rao Kommalapati & Ziaul Huque, 2018. "Life Cycle Environmental Impact of Onshore and Offshore Wind Farms in Texas," Sustainability, MDPI, vol. 10(6), pages 1-18, June.
    8. Floor Brouwer & Lydia Vamvakeridou-Lyroudia & Eva Alexandri & Ingrida Bremere & Matthew Griffey & Vincent Linderhof, 2018. "The Nexus Concept Integrating Energy and Resource Efficiency for Policy Assessments: A Comparative Approach from Three Cases," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    9. Zhu, Yuli & Liang, Ji & Yang, Qing & Zhou, Hewen & Peng, Kun, 2019. "Water use of a biomass direct-combustion power generation system in China: A combination of life cycle assessment and water footprint analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    10. Pedro Arriagada & Bastien Dieppois & Moussa Sidibe & Oscar Link, 2019. "Impacts of Climate Change and Climate Variability on Hydropower Potential in Data-Scarce Regions Subjected to Multi-Decadal Variability," Energies, MDPI, vol. 12(14), pages 1-20, July.
    11. Vega-Coloma, Mabel & Zaror, Claudio A., 2018. "Environmental impact profile of electricity generation in Chile: A baseline study over two decades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 154-167.
    12. Enrico Sciubba, 2019. "The Exergy Footprint as a Sustainability Indicator: An Application to the Neanderthal–Sapiens Competition in the Late Pleistocene," Sustainability, MDPI, vol. 11(18), pages 1-20, September.
    13. Simsek, Yeliz & Lorca, Álvaro & Urmee, Tania & Bahri, Parisa A. & Escobar, Rodrigo, 2019. "Review and assessment of energy policy developments in Chile," Energy Policy, Elsevier, vol. 127(C), pages 87-101.
    14. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.
    15. Charfeddine, Lanouar, 2017. "The impact of energy consumption and economic development on Ecological Footprint and CO2 emissions: Evidence from a Markov Switching Equilibrium Correction Model," Energy Economics, Elsevier, vol. 65(C), pages 355-374.
    16. M. A. Parvez Mahmud & Nazmul Huda & Shahjadi Hisan Farjana & Candace Lang, 2018. "Environmental Impacts of Solar-Photovoltaic and Solar-Thermal Systems with Life-Cycle Assessment," Energies, MDPI, vol. 11(9), pages 1-21, September.
    17. Bazilian, Morgan & Rogner, Holger & Howells, Mark & Hermann, Sebastian & Arent, Douglas & Gielen, Dolf & Steduto, Pasquale & Mueller, Alexander & Komor, Paul & Tol, Richard S.J. & Yumkella, Kandeh K., 2011. "Considering the energy, water and food nexus: Towards an integrated modelling approach," Energy Policy, Elsevier, vol. 39(12), pages 7896-7906.
    18. Turconi, Roberto & Boldrin, Alessio & Astrup, Thomas, 2013. "Life cycle assessment (LCA) of electricity generation technologies: Overview, comparability and limitations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 555-565.
    19. Casas-Ledón, Yannay & Flores, Mauricio & Jiménez, Romel & Ronsse, Frederik & Dewulf, Jo & Arteaga-Pérez, Luis E., 2019. "On the environmental and economic issues associated with the forestry residues-to-heat and electricity route in Chile: Sawdust gasification as a case study," Energy, Elsevier, vol. 170(C), pages 763-776.
    20. Trainer, Ted, 2017. "Some problems in storing renewable energy," Energy Policy, Elsevier, vol. 110(C), pages 386-393.
    21. Díaz, María Elisa & Figueroa, Ricardo & Alonso, M. Luisa Suárez & Vidal-Abarca, M. Rosario, 2018. "Exploring the complex relations between water resources and social indicators: The Biobío Basin (Chile)," Ecosystem Services, Elsevier, vol. 31(PA), pages 84-92.
    22. Szargut, Jan T., 2004. "Optimization of the design parameters aiming at the minimization of the depletion of non-renewable resources," Energy, Elsevier, vol. 29(12), pages 2161-2169.
    23. Erb, Karl-Heinz & Krausmann, Fridolin & Gaube, Veronika & Gingrich, Simone & Bondeau, Alberte & Fischer-Kowalski, Marina & Haberl, Helmut, 2009. "Analyzing the global human appropriation of net primary production -- processes, trajectories, implications. An introduction," Ecological Economics, Elsevier, vol. 69(2), pages 250-259, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Jingchao & Na, Hongming & Yan, Tianyi & Qiu, Ziyang & Yuan, Yuxing & He, Jianfei & Li, Yingnan & Wang, Yisong & Du, Tao, 2021. "A comprehensive assessment on material, exergy and emission networks for the integrated iron and steel industry," Energy, Elsevier, vol. 235(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xue-Chao & Jiang, Peng & Yang, Lan & Fan, Yee Van & Klemeš, Jiří Jaromír & Wang, Yutao, 2021. "Extended water-energy nexus contribution to environmentally-related sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    2. Wang, Saige & Chen, Bin, 2021. "Unraveling energy–water nexus paths in urban agglomeration: A case study of Beijing–Tianjin–Hebei," Applied Energy, Elsevier, vol. 304(C).
    3. Roger Cremades & Hermine Mitter & Nicu Constantin Tudose & Anabel Sanchez-Plaza & Anil Graves & Annelies Broekman & Steffen Bender & Carlo Giupponi & Phoebe Koundouri & Muhamad Bahri & Sorin Cheval & , 2019. "Ten principles to integrate the water-energy-land nexus with climate services for co-producing local and regional integrated assessments," DEOS Working Papers 1915, Athens University of Economics and Business.
    4. Cássia Juliana Fernandes Torres & Camilla Hellen Peixoto de Lima & Bárbara Suzart de Almeida Goodwin & Terencio Rebello de Aguiar Junior & Andrea Sousa Fontes & Daniel Veras Ribeiro & Rodrigo Saldanha, 2019. "A Literature Review to Propose a Systematic Procedure to Develop “Nexus Thinking” Considering the Water–Energy–Food Nexus," Sustainability, MDPI, vol. 11(24), pages 1-32, December.
    5. Liu, Yaping & Sadiq, Farah & Ali, Wajahat & Kumail, Tafazal, 2022. "Does tourism development, energy consumption, trade openness and economic growth matters for ecological footprint: Testing the Environmental Kuznets Curve and pollution haven hypothesis for Pakistan," Energy, Elsevier, vol. 245(C).
    6. Dai, Jiangyu & Wu, Shiqiang & Han, Guoyi & Weinberg, Josh & Xie, Xinghua & Wu, Xiufeng & Song, Xingqiang & Jia, Benyou & Xue, Wanyun & Yang, Qianqian, 2018. "Water-energy nexus: A review of methods and tools for macro-assessment," Applied Energy, Elsevier, vol. 210(C), pages 393-408.
    7. Özlem Karadağ Albayrak & Samet Topal & Serhat Çamkaya, 2022. "The Impact of Economic Growth, Renewable Energy, Non-renewable Energy and Trade Openness on the Ecological Footprint and Forecasting in Turkiye: an Case of the ARDL and NMGM Forecasting Model," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 10(2), pages 139-154, December.
    8. Guan, Shihui & Han, Mengyao & Wu, Xiaofang & Guan, ChengHe & Zhang, Bo, 2019. "Exploring energy-water-land nexus in national supply chains: China 2012," Energy, Elsevier, vol. 185(C), pages 1225-1234.
    9. Ansari, Mohd Arshad, 2022. "Re-visiting the Environmental Kuznets curve for ASEAN: A comparison between ecological footprint and carbon dioxide emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Mahmud, M. A. Parvez & Huda, Nazmul & Farjana, Shahjadi Hisan & Lang, Candace, 2019. "A strategic impact assessment of hydropower plants in alpine and non-alpine areas of Europe," Applied Energy, Elsevier, vol. 250(C), pages 198-214.
    11. Zhang, S.Q. & Li, Y.P. & Huang, G.H. & Ding, Y.K. & Yang, X., 2023. "Developing a copula-based input-output method for analyzing energy-water nexus of Tajikistan," Energy, Elsevier, vol. 266(C).
    12. Chen, Zi-yue & Huang, Zhen-hai & Nie, Pu-yan, 2018. "Industrial characteristics and consumption efficiency from a nexus perspective – Based on Anhui’s Empirical Statistics," Energy Policy, Elsevier, vol. 115(C), pages 281-290.
    13. Pauline Macharia & Maria Wirth & Paul Yillia & Norbert Kreuzinger, 2021. "Examining the Relative Impact of Drivers on Energy Input for Municipal Water Supply in Africa," Sustainability, MDPI, vol. 13(15), pages 1-27, July.
    14. Ana Luiza Fontenelle & Erik Nilsson & Ieda Geriberto Hidalgo & Cintia B. Uvo & Drielli Peyerl, 2022. "Temporal Understanding of the Water–Energy Nexus: A Literature Review," Energies, MDPI, vol. 15(8), pages 1-21, April.
    15. Nawab, Asim & Liu, Gengyuan & Meng, Fanxin & Hao, Yan & Zhang, Yan, 2019. "Urban energy-water nexus: Spatial and inter-sectoral analysis in a multi-scale economy," Ecological Modelling, Elsevier, vol. 403(C), pages 44-56.
    16. Juliana Segura-Salazar & Luís Marcelo Tavares, 2018. "Sustainability in the Minerals Industry: Seeking a Consensus on Its Meaning," Sustainability, MDPI, vol. 10(5), pages 1-38, May.
    17. Hossain, Md. Emran & Islam, Md. Sayemul & Bandyopadhyay, Arunava & Awan, Ashar & Hossain, Mohammad Razib & Rej, Soumen, 2022. "Mexico at the crossroads of natural resource dependence and COP26 pledge: Does technological innovation help?," Resources Policy, Elsevier, vol. 77(C).
    18. Olimpia Neagu, 2020. "Economic Complexity and Ecological Footprint: Evidence from the Most Complex Economies in the World," Sustainability, MDPI, vol. 12(21), pages 1-18, October.
    19. Bieber, Niclas & Ker, Jen Ho & Wang, Xiaonan & Triantafyllidis, Charalampos & van Dam, Koen H. & Koppelaar, Rembrandt H.E.M. & Shah, Nilay, 2018. "Sustainable planning of the energy-water-food nexus using decision making tools," Energy Policy, Elsevier, vol. 113(C), pages 584-607.
    20. Jing Zhu & Shenghong Kang & Wenwu Zhao & Qiujie Li & Xinyuan Xie & Xiangping Hu, 2020. "A Bibliometric Analysis of Food–Energy–Water Nexus: Progress and Prospects," Land, MDPI, vol. 9(12), pages 1-22, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2019:i:1:p:42-:d:300014. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.