IDEAS home Printed from https://ideas.repec.org/a/spr/climat/v144y2017i4d10.1007_s10584-017-2055-4.html
   My bibliography  Save this article

Assessing uncertainty of climate change impacts on long-term hydropower generation using the CMIP5 ensemble—the case of Ecuador

Author

Listed:
  • Pablo E. Carvajal

    (University College London)

  • Gabrial Anandarajah

    (University College London)

  • Yacob Mulugetta

    (University College London)

  • Olivier Dessens

    (University College London)

Abstract

This study presents a method to assess the sensitivity of hydropower generation to uncertain water resource availability driven by future climate change. A hydrology-electricity modelling framework was developed and applied to six rivers where 10 hydropower stations operate, which together represent over 85% of Ecuador’s installed hydropower capacity. The modelling framework was then forced with bias-corrected output from 40 individual global circulation model experiments from the Coupled Model Intercomparison Project 5 for the Representative Concentration Pathway 4.5 scenario. Impacts of changing climate on hydropower resource were quantified for 2071–2100 relative to a baseline period 1971–2000. Results show a wide annual average inflow range from + 277% to − 85% when individual climate experiments are assessed. The analysis also show that hydropower generation in Ecuador is highly uncertain and sensitive to climate change since variations in inflow to hydropower stations would directly result in changes in the expected hydropower potential. Annual hydroelectric power production in Ecuador is found to vary between − 55 and + 39% of the mean historical output when considering future inflow patterns to hydroelectric reservoirs covering one standard deviation of the CMIP5 RCP4.5 climate ensemble.

Suggested Citation

  • Pablo E. Carvajal & Gabrial Anandarajah & Yacob Mulugetta & Olivier Dessens, 2017. "Assessing uncertainty of climate change impacts on long-term hydropower generation using the CMIP5 ensemble—the case of Ecuador," Climatic Change, Springer, vol. 144(4), pages 611-624, October.
  • Handle: RePEc:spr:climat:v:144:y:2017:i:4:d:10.1007_s10584-017-2055-4
    DOI: 10.1007/s10584-017-2055-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10584-017-2055-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10584-017-2055-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Awerbuch, Shimon & Yang, Spencer, 2007. "Efficient electricity generating portfolios for Europe: maximising energy security and climate change mitigation," EIB Papers 7/2007, European Investment Bank, Economics Department.
    2. Simon Parkinson & Ned Djilali, 2015. "Robust response to hydro-climatic change in electricity generation planning," Climatic Change, Springer, vol. 130(4), pages 475-489, June.
    3. -, 2012. "Análisis de la vulnerabilidad del sector hidroeléctrico frente a escenarios futuros de cambio climático en Chile," Medio Ambiente y Desarrollo 5687, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    4. Johan Grijsen, 2014. "Understanding the Impact of Climate Change on Hydropower : The Case of Cameroon," World Bank Publications - Reports 18243, The World Bank Group.
    5. Michelle T. H. van Vliet & David Wiberg & Sylvain Leduc & Keywan Riahi, 2016. "Power-generation system vulnerability and adaptation to changes in climate and water resources," Nature Climate Change, Nature, vol. 6(4), pages 375-380, April.
    6. Vithayasrichareon, Peerapat & MacGill, Iain F., 2012. "Portfolio assessments for future generation investment in newly industrializing countries – A case study of Thailand," Energy, Elsevier, vol. 44(1), pages 1044-1058.
    7. de Lucena, André Frossard Pereira & Szklo, Alexandre Salem & Schaeffer, Roberto & de Souza, Raquel Rodrigues & Borba, Bruno Soares Moreira Cesar & da Costa, Isabella Vaz Leal & Júnior, Amaro Olimpio P, 2009. "The vulnerability of renewable energy to climate change in Brazil," Energy Policy, Elsevier, vol. 37(3), pages 879-889, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qin, Pengcheng & Xu, Hongmei & Liu, Min & Xiao, Chan & Forrest, Kate E. & Samuelsen, Scott & Tarroja, Brian, 2020. "Assessing concurrent effects of climate change on hydropower supply, electricity demand, and greenhouse gas emissions in the Upper Yangtze River Basin of China," Applied Energy, Elsevier, vol. 279(C).
    2. Sebastian Naranjo-Silva & Diego Punina-Guerrero & Luis Rivera-Gonzalez & Kenny Escobar-Segovia & Jose David Barros-Enriquez & Jorge Armando Almeida-Dominguez & Javier Alvarez del Castillo, 2023. "Hydropower Scenarios in the Face of Climate Change in Ecuador," Sustainability, MDPI, vol. 15(13), pages 1-15, June.
    3. Elaheh Asgari & Mohammad Sadegh Norouzi Nazar & Mohammad Baaghideh & Alireza Entezari & Mojtaba Shourian, 2024. "Possible changes in future reservoir inflow and hydropower production potential under CMIP6 GCMs projections for the Dez Dam, Western Iran," Climatic Change, Springer, vol. 177(12), pages 1-26, December.
    4. Pengcheng Qin & Hongmei Xu & Min Liu & Lüliu Liu & Chan Xiao & Iman Mallakpour & Matin Rahnamay Naeini & Kuolin Hsu & Soroosh Sorooshian, 2022. "Projected impacts of climate change on major dams in the Upper Yangtze River Basin," Climatic Change, Springer, vol. 170(1), pages 1-24, January.
    5. Pedro Arriagada & Bastien Dieppois & Moussa Sidibe & Oscar Link, 2019. "Impacts of Climate Change and Climate Variability on Hydropower Potential in Data-Scarce Regions Subjected to Multi-Decadal Variability," Energies, MDPI, vol. 12(14), pages 1-20, July.
    6. Priyanka Majumder & Mrinmoy Majumder & Apu Kumar Saha & Soumitra Nath, 2020. "Selection of features for analysis of reliability of performance in hydropower plants: a multi-criteria decision making approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 3239-3265, April.
    7. Jaewon Jung & Heechan Han & Kyunghun Kim & Hung Soo Kim, 2021. "Machine Learning-Based Small Hydropower Potential Prediction under Climate Change," Energies, MDPI, vol. 14(12), pages 1-10, June.
    8. Jaewon Jung & Sungeun Jung & Junhyeong Lee & Myungjin Lee & Hung Soo Kim, 2021. "Analysis of Small Hydropower Generation Potential: (2) Future Prospect of the Potential under Climate Change," Energies, MDPI, vol. 14(11), pages 1-26, May.
    9. Sungeun Jung & Younghye Bae & Jongsung Kim & Hongjun Joo & Hung Soo Kim & Jaewon Jung, 2021. "Analysis of Small Hydropower Generation Potential: (1) Estimation of the Potential in Ungaged Basins," Energies, MDPI, vol. 14(11), pages 1-20, May.
    10. Zhang, Yi & Cheng, Chuntian & Yang, Tiantian & Jin, Xiaoyu & Jia, Zebin & Shen, Jianjian & Wu, Xinyu, 2022. "Assessment of climate change impacts on the hydro-wind-solar energy supply system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    11. Jennifer Cronin & Gabrial Anandarajah & Olivier Dessens, 2018. "Climate change impacts on the energy system: a review of trends and gaps," Climatic Change, Springer, vol. 151(2), pages 79-93, November.
    12. Lucena, André F.P. & Hejazi, Mohamad & Vasquez-Arroyo, Eveline & Turner, Sean & Köberle, Alexandre C. & Daenzer, Kathryn & Rochedo, Pedro R.R. & Kober, Tom & Cai, Yongxia & Beach, Robert H. & Gernaat,, 2018. "Interactions between climate change mitigation and adaptation: The case of hydropower in Brazil," Energy, Elsevier, vol. 164(C), pages 1161-1177.
    13. Qi Cui & Tariq Ali & Wei Xie & Jikun Huang & Jinxia Wang, 2022. "The uncertainty of climate change impacts on China’s agricultural economy based on an integrated assessment approach," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(3), pages 1-22, March.
    14. Danyang Gao & Albert S. Chen & Fayyaz Ali Memon, 2024. "A Systematic Review of Methods for Investigating Climate Change Impacts on Water-Energy-Food Nexus," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(1), pages 1-43, January.
    15. J. Restrepo-Trujillo & Ricardo Moreno-Chuquen & Francy Nelly Jim nez-Garc a, 2020. "Strategies of Expansion for Electric Power Systems Based on Hydroelectric Plants in the Context of Climate Change: Case of Analysis of Colombia," International Journal of Energy Economics and Policy, Econjournals, vol. 10(6), pages 66-74.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. deLlano-Paz, Fernando & Calvo-Silvosa, Anxo & Iglesias Antelo, Susana & Soares, Isabel, 2015. "The European low-carbon mix for 2030: The role of renewable energy sources in an environmentally and socially efficient approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 49-61.
    2. deLlano-Paz, Fernando & Martínez Fernandez, Paulino & Soares, Isabel, 2016. "Addressing 2030 EU policy framework for energy and climate: Cost, risk and energy security issues," Energy, Elsevier, vol. 115(P2), pages 1347-1360.
    3. Paulino Martinez-Fernandez & Fernando deLlano-Paz & Anxo Calvo-Silvosa & Isabel Soares, 2018. "Pollutant versus non-pollutant generation technologies: a CML-analogous analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 199-212, December.
    4. Oikonomou, Konstantinos & Tarroja, Brian & Kern, Jordan & Voisin, Nathalie, 2022. "Core process representation in power system operational models: Gaps, challenges, and opportunities for multisector dynamics research," Energy, Elsevier, vol. 238(PC).
    5. Craig, Michael T. & Cohen, Stuart & Macknick, Jordan & Draxl, Caroline & Guerra, Omar J. & Sengupta, Manajit & Haupt, Sue Ellen & Hodge, Bri-Mathias & Brancucci, Carlo, 2018. "A review of the potential impacts of climate change on bulk power system planning and operations in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 255-267.
    6. M, Jisma & Mohan, Vivek & Thomas, Mini Shaji & Madhu M, Nimal, 2022. "Risk-Calibrated conventional-renewable generation mix using master-slave portfolio approach guided by flexible investor preferencing," Energy, Elsevier, vol. 245(C).
    7. Lucena, André F.P. & Hejazi, Mohamad & Vasquez-Arroyo, Eveline & Turner, Sean & Köberle, Alexandre C. & Daenzer, Kathryn & Rochedo, Pedro R.R. & Kober, Tom & Cai, Yongxia & Beach, Robert H. & Gernaat,, 2018. "Interactions between climate change mitigation and adaptation: The case of hydropower in Brazil," Energy, Elsevier, vol. 164(C), pages 1161-1177.
    8. Voisin, Nathalie & Dyreson, Ana & Fu, Tao & O'Connell, Matt & Turner, Sean W.D. & Zhou, Tian & Macknick, Jordan, 2020. "Impact of climate change on water availability and its propagation through the Western U.S. power grid," Applied Energy, Elsevier, vol. 276(C).
    9. Yue Zhang & Alun Gu & Hui Lu & Wei Wang, 2017. "Hydropower Generation Vulnerability in the Yangtze River in China under Climate Change Scenarios: Analysis Based on the WEAP Model," Sustainability, MDPI, vol. 9(11), pages 1-15, November.
    10. deLlano-Paz, Fernando & Calvo-Silvosa, Anxo & Antelo, Susana Iglesias & Soares, Isabel, 2017. "Energy planning and modern portfolio theory: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 636-651.
    11. Oyedepo, Sunday Olayinka, 2014. "Towards achieving energy for sustainable development in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 255-272.
    12. Pavičević, Matija & De Felice, Matteo & Busch, Sebastian & Hidalgo González, Ignacio & Quoilin, Sylvain, 2021. "Water-energy nexus in African power pools – The Dispa-SET Africa model," Energy, Elsevier, vol. 228(C).
    13. Ayoub, Ali & Gjorgiev, Blaže & Sansavini, Giovanni, 2018. "Cooling towers performance in a changing climate: Techno-economic modeling and design optimization," Energy, Elsevier, vol. 160(C), pages 1133-1143.
    14. Zhou, Yuanchun & Ma, Mengdie & Gao, Peiqi & Xu, Qiming & Bi, Jun & Naren, Tuya, 2019. "Managing water resources from the energy - water nexus perspective under a changing climate: A case study of Jiangsu province, China," Energy Policy, Elsevier, vol. 126(C), pages 380-390.
    15. Chassin, David P. & Behboodi, Sahand & Djilali, Ned, 2018. "Optimal subhourly electricity resource dispatch under multiple price signals with high renewable generation availability," Applied Energy, Elsevier, vol. 213(C), pages 262-271.
    16. SarahM. Jordaan & Afreen Siddiqi & William Kakenmaster & AliceC. Hill, 2019. "The Climate Vulnerabilities of Global Nuclear Power," Global Environmental Politics, MIT Press, vol. 19(4), pages 3-13, November.
    17. Géremi Gilson Dranka & Paula Ferreira, 2020. "Electric Vehicles and Biofuels Synergies in the Brazilian Energy System," Energies, MDPI, vol. 13(17), pages 1-22, August.
    18. repec:ers:journl:v:xv:y:2012:i:sie:p:3-30 is not listed on IDEAS
    19. Lan-Cui Liu & Gang Wu, 2015. "Assessment of energy supply vulnerability between China and USA," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(2), pages 127-138, February.
    20. Aleksejs Prozuments & Arturs Brahmanis & Armands Mucenieks & Vladislavs Jacnevs & Deniss Zajecs, 2022. "Preliminary Study of Various Cross-Sectional Metal Sheet Shapes in Adiabatic Evaporative Cooling Pads," Energies, MDPI, vol. 15(11), pages 1-10, May.
    21. Omar A. de la Cruz Courtois & Maritza Liliana Arganis Juárez & Delva Guichard Romero, 2021. "Simulated Optimal Operation Policies of a Reservoir System Obtained with Continuous Functions Using Synthetic Inflows," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(7), pages 2249-2263, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:climat:v:144:y:2017:i:4:d:10.1007_s10584-017-2055-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.