IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i8p2075-d532574.html
   My bibliography  Save this article

The Effects of Hydropower Plants on the Physicochemical Parameters of the Bystrzyca River in Poland

Author

Listed:
  • Paweł Tomczyk

    (Institute of Environmental Engineering, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 24, 50-363 Wrocław, Poland)

  • Mirosław Wiatkowski

    (Institute of Environmental Engineering, Wroclaw University of Environmental and Life Sciences, pl. Grunwaldzki 24, 50-363 Wrocław, Poland)

Abstract

Currently, the literature lacks comprehensive studies on the impact of hydropower plants (HPs) on the environment, including studies focused on the physicochemical parameters of water. The aim of the article is to verify the current state of knowledge on the impact of run-of-river HPs on 17 physicochemical parameters of water. The article is in line with the recommendations of the European Union that the member states, under the common energy policy, should increase the share of renewable energy sources in the energy and perform environmental impact assessments of such facilities. As a result of the analysis carried out on three HPs (Sadowice, Skałka and Marszowice) located on the Bystrzyca River (a tributary of the Odra River in Poland), it was found that HPs affect the selected physicochemical parameters of the water, i.e., ( p < 0.05): electrolytic conductivity (EC; Skałka, Marszowice HPs), pH (Skałka, Marszowice HPs); nitrate nitrogen (NO 3 -N; Marszowice HP), dissolved oxygen (DO; Marszowice HP) and ammonium nitrogen (NH 4 -N; Marszowice HP). The largest (>5%), statistically significant mean cumulative effect below Marszowice HP concerned NH 4 -N (−27.83%), DO (+14.04%) and NO 3 -N (+5.50%). In addition, it was observed that the effect of HPs increases in direct proportion to the damming height, and that run-of-river HPs have a lesser impact on the physicochemical parameters’ values than in storage HPs. Our results were in accordance with those of other scientists in terms of the increase in DO, the decrease in EC, and the decrease in total phosphorus concentrations below HPs.

Suggested Citation

  • Paweł Tomczyk & Mirosław Wiatkowski, 2021. "The Effects of Hydropower Plants on the Physicochemical Parameters of the Bystrzyca River in Poland," Energies, MDPI, vol. 14(8), pages 1-29, April.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2075-:d:532574
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/8/2075/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/8/2075/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Byman H. Hamududu & Ånund Killingtveit, 2016. "Hydropower Production in Future Climate Scenarios; the Case for the Zambezi River," Energies, MDPI, vol. 9(7), pages 1-18, June.
    2. Kelly-Richards, Sarah & Silber-Coats, Noah & Crootof, Arica & Tecklin, David & Bauer, Carl, 2017. "Governing the transition to renewable energy: A review of impacts and policy issues in the small hydropower boom," Energy Policy, Elsevier, vol. 101(C), pages 251-264.
    3. Byman H. Hamududu & Ånund Killingtveit, 2016. "Hydropower Production in Future Climate Scenarios: The Case for Kwanza River, Angola," Energies, MDPI, vol. 9(5), pages 1-13, May.
    4. Ayse Muhammetoglu & Habib Muhammetoglu & Sedat Oktas & Levent Ozgokcen & Selcuk Soyupak, 2005. "Impact Assessment of Different Management Scenarios on Water Quality of Porsuk River and Dam System – Turkey," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 19(2), pages 199-210, April.
    5. Brainwood, M. A. & Burgin, S. & Maheshwari, B., 2004. "Temporal variations in water quality of farm dams: impacts of land use and water sources," Agricultural Water Management, Elsevier, vol. 70(2), pages 151-175, November.
    6. Yongyong Zhang & Jun Xia & Tao Liang & Quanxi Shao, 2010. "Impact of Water Projects on River Flow Regimes and Water Quality in Huai River Basin," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(5), pages 889-908, March.
    7. Yu, Bing & Xu, Linyu, 2016. "Review of ecological compensation in hydropower development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 729-738.
    8. Kougias, Ioannis & Aggidis, George & Avellan, François & Deniz, Sabri & Lundin, Urban & Moro, Alberto & Muntean, Sebastian & Novara, Daniele & Pérez-Díaz, Juan Ignacio & Quaranta, Emanuele & Schild, P, 2019. "Analysis of emerging technologies in the hydropower sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    9. Naresh Suwal & Alban Kuriqi & Xianfeng Huang & João Delgado & Dariusz Młyński & Andrzej Walega, 2020. "Environmental Flows Assessment in Nepal: The Case of Kaligandaki River," Sustainability, MDPI, vol. 12(21), pages 1-23, October.
    10. GuoLiang Wei & ZhiFeng Yang & BaoShan Cui & Bing Li & He Chen & JunHong Bai & ShiKui Dong, 2009. "Impact of Dam Construction on Water Quality and Water Self-Purification Capacity of the Lancang River, China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(9), pages 1763-1780, July.
    11. Schramm, Michael P. & Bevelhimer, Mark S. & DeRolph, Chris R., 2016. "A synthesis of environmental and recreational mitigation requirements at hydropower projects in the United States," Environmental Science & Policy, Elsevier, vol. 61(C), pages 87-96.
    12. Huđek, Helena & Žganec, Krešimir & Pusch, Martin T., 2020. "A review of hydropower dams in Southeast Europe – distribution, trends and availability of monitoring data using the example of a multinational Danube catchment subarea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    13. Kuriqi, Alban & Pinheiro, António N. & Sordo-Ward, Alvaro & Bejarano, María D. & Garrote, Luis, 2021. "Ecological impacts of run-of-river hydropower plants—Current status and future prospects on the brink of energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aleksandra Wdowczyk & Agata Szymańska-Pulikowska, 2022. "Micro- and Macroelements Content of Plants Used for Landfill Leachate Treatment Based on Phragmites australis and Ceratophyllum demersum," IJERPH, MDPI, vol. 19(10), pages 1-22, May.
    2. Aleksandra Wdowczyk & Agata Szymańska-Pulikowska & Magdalena Domańska, 2022. "Analysis of the Bacterial Biocenosis of Activated Sludge Treated with Leachate from Municipal Landfills," IJERPH, MDPI, vol. 19(3), pages 1-22, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Natalia Walczak & Zbigniew Walczak & Jakub Nieć, 2021. "Influence of Debris on Water Intake Gratings in Small Hydroelectric Plants: An Experimental Study on Hydraulic Parameters," Energies, MDPI, vol. 14(11), pages 1-13, June.
    2. Katarzyna Kubiak-Wójcicka & Leszek Szczęch, 2021. "Dynamics of Electricity Production against the Backdrop of Climate Change: A Case Study of Hydropower Plants in Poland," Energies, MDPI, vol. 14(12), pages 1-24, June.
    3. Jaewon Jung & Heechan Han & Kyunghun Kim & Hung Soo Kim, 2021. "Machine Learning-Based Small Hydropower Potential Prediction under Climate Change," Energies, MDPI, vol. 14(12), pages 1-10, June.
    4. Maxime Binama & Kan Kan & Hui-Xiang Chen & Yuan Zheng & Da-Qing Zhou & Wen-Tao Su & Xin-Feng Ge & Janvier Ndayizigiye, 2021. "A Numerical Investigation into the PAT Hydrodynamic Response to Impeller Rotational Speed Variation," Sustainability, MDPI, vol. 13(14), pages 1-22, July.
    5. Byman H. Hamududu & Hambulo Ngoma, 2020. "Impacts of climate change on water resources availability in Zambia: implications for irrigation development," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(4), pages 2817-2838, April.
    6. Jaewon Jung & Sungeun Jung & Junhyeong Lee & Myungjin Lee & Hung Soo Kim, 2021. "Analysis of Small Hydropower Generation Potential: (2) Future Prospect of the Potential under Climate Change," Energies, MDPI, vol. 14(11), pages 1-26, May.
    7. Dulias Renata, 2022. "Anthropogenic and natural factors influencing African World Heritage sites," Environmental & Socio-economic Studies, Sciendo, vol. 10(3), pages 67-84, September.
    8. Pei Zhao & Xiangyu Tang & Jialiang Tang & Chao Wang, 2013. "Assessing Water Quality of Three Gorges Reservoir, China, Over a Five-Year Period From 2006 to 2011," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(13), pages 4545-4558, October.
    9. Zaher Mundher Yaseen & Ameen Mohammed Salih Ameen & Mohammed Suleman Aldlemy & Mumtaz Ali & Haitham Abdulmohsin Afan & Senlin Zhu & Ahmed Mohammed Sami Al-Janabi & Nadhir Al-Ansari & Tiyasha Tiyasha &, 2020. "State-of-the Art-Powerhouse, Dam Structure, and Turbine Operation and Vibrations," Sustainability, MDPI, vol. 12(4), pages 1-40, February.
    10. Yiran Wang & Dahong Zhang & Yahui Wang, 2021. "Evaluation Analysis of Forest Ecological Security in 11 Provinces (Cities) of the Yangtze River Economic Belt," Sustainability, MDPI, vol. 13(9), pages 1-13, April.
    11. Młyński, Dariusz & Książek, Leszek & Bogdał, Andrzej, 2024. "Meteorological drought effect for Central Europe's hydropower potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    12. Ren, Siyue & Feng, Xiao, 2021. "Emergy evaluation of ladder hydropower generation systems in the middle and lower reaches of the Lancang River," Renewable Energy, Elsevier, vol. 169(C), pages 1038-1050.
    13. Pedro Arriagada & Bastien Dieppois & Moussa Sidibe & Oscar Link, 2019. "Impacts of Climate Change and Climate Variability on Hydropower Potential in Data-Scarce Regions Subjected to Multi-Decadal Variability," Energies, MDPI, vol. 12(14), pages 1-20, July.
    14. Sungeun Jung & Younghye Bae & Jongsung Kim & Hongjun Joo & Hung Soo Kim & Jaewon Jung, 2021. "Analysis of Small Hydropower Generation Potential: (1) Estimation of the Potential in Ungaged Basins," Energies, MDPI, vol. 14(11), pages 1-20, May.
    15. Oladosu, Gbadebo A. & Werble, Joseph & Tingen, William & Witt, Adam & Mobley, Miles & O'Connor, Patrick, 2021. "Costs of mitigating the environmental impacts of hydropower projects in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    16. Zhong, Ruida & Zhao, Tongtiegang & He, Yanhu & Chen, Xiaohong, 2019. "Hydropower change of the water tower of Asia in 21st century: A case of the Lancang River hydropower base, upper Mekong," Energy, Elsevier, vol. 179(C), pages 685-696.
    17. Kuriqi, Alban & Pinheiro, António N. & Sordo-Ward, Alvaro & Bejarano, María D. & Garrote, Luis, 2021. "Ecological impacts of run-of-river hydropower plants—Current status and future prospects on the brink of energy transition," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    18. Wen, Xin & Sun, Yuanliang & Tan, Qiaofeng & Tang, Zhengyang & Wang, Zhenni & Liu, Zhehua & Ding, Ziyu, 2022. "Optimizing the sizes of wind and photovoltaic plants complementarily operating with cascade hydropower stations: Balancing risk and benefit," Applied Energy, Elsevier, vol. 306(PA).
    19. Costea, Gabriela & Pusch, Martin T. & Bănăduc, Doru & Cosmoiu, Diana & Curtean-Bănăduc, Angela, 2021. "A review of hydropower plants in Romania: Distribution, current knowledge, and their effects on fish in headwater streams," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    20. Dogmus, Özge Can & Nielsen, Jonas Ø., 2019. "Is the hydropower boom actually taking place? A case study of a South East European country, Bosnia and Herzegovina," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 278-289.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:8:p:2075-:d:532574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.