IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i14p2715-d248778.html
   My bibliography  Save this article

Constraint Satisfaction in Current Control of a Five-Phase Drive with Locally Tuned Predictive Controllers

Author

Listed:
  • Agnieszka Kowal G.

    (Systems Engineering and Automation Department, University of Seville, 41092 Seville, Spain)

  • Manuel R. Arahal

    (Systems Engineering and Automation Department, University of Seville, 41092 Seville, Spain)

  • Cristina Martin

    (Electronic Engineering Department, University of Seville, 41092 Seville, Spain)

  • Federico Barrero

    (Electronic Engineering Department, University of Seville, 41092 Seville, Spain)

Abstract

The problem of control of stator currents in multi-phase induction machines has recently been tackled by direct digital model predictive control. Although these predictive controllers can directly incorporate constraints, most reported applications for stator current control of drives do no use this possibility, being the usual practice tuning the controller to achieve the particular compromise solution. The proposal of this paper is to change the form of the tuning problem of predictive controllers so that constraints are explicitly taken into account. This is done by considering multiple controllers that are locally optimal. To illustrate the method, a five-phase drive is considered and the problem of minimizing x − y losses while simultaneously maintaining the switching frequency and current tracking error below some limits is tackled. The experiments showed that the constraint feasibility problem has, in general, no solution for standard predictive control, whereas the proposed scheme provides good tracking performance without violating constraints in switching frequency and at the same time reducing parasitic currents of x − y subspaces.

Suggested Citation

  • Agnieszka Kowal G. & Manuel R. Arahal & Cristina Martin & Federico Barrero, 2019. "Constraint Satisfaction in Current Control of a Five-Phase Drive with Locally Tuned Predictive Controllers," Energies, MDPI, vol. 12(14), pages 1-9, July.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2715-:d:248778
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/14/2715/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/14/2715/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hussain Sarwar Khan & Muhammad Aamir & Muhammad Ali & Asad Waqar & Syed Umaid Ali & Junaid Imtiaz, 2019. "Finite Control Set Model Predictive Control for Parallel Connected Online UPS System under Unbalanced and Nonlinear Loads," Energies, MDPI, vol. 12(4), pages 1-20, February.
    2. Hannan, M.A. & Ali, Jamal A. & Mohamed, Azah & Hussain, Aini, 2018. "Optimization techniques to enhance the performance of induction motor drives: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1611-1626.
    3. Cristina Martin & Federico Barrero & Manuel R. Arahal & Mario J. Duran, 2019. "Model-Based Predictive Current Controllers in Multiphase Drives Dealing with Natural Reduction of Harmonic Distortion," Energies, MDPI, vol. 12(9), pages 1-12, May.
    4. Yassine Kali & Magno Ayala & Jorge Rodas & Maarouf Saad & Jesus Doval-Gandoy & Raul Gregor & Khalid Benjelloun, 2019. "Current Control of a Six-Phase Induction Machine Drive Based on Discrete-Time Sliding Mode with Time Delay Estimation," Energies, MDPI, vol. 12(1), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vladimir Kindl & Radek Cermak & Zelmira Ferkova & Bohumil Skala, 2020. "Review of Time and Space Harmonics in Multi-Phase Induction Machine," Energies, MDPI, vol. 13(2), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdul Rehman Yasin & Muhammad Ashraf & Aamer Iqbal Bhatti, 2019. "A Novel Filter Extracted Equivalent Control Based Fixed Frequency Sliding Mode Approach for Power Electronic Converters," Energies, MDPI, vol. 12(5), pages 1-14, March.
    2. Luís Caseiro & André Mendes, 2021. "Fault Analysis and Non-Redundant Fault Tolerance in 3-Level Double Conversion UPS Systems Using Finite-Control-Set Model Predictive Control," Energies, MDPI, vol. 14(8), pages 1-39, April.
    3. Feng Cai & Ke Li & Xiaodong Sun & Minkai Wu, 2021. "Air-Gap Flux Oriented Vector Control Based on Reduced-Order Flux Observer for EESM," Energies, MDPI, vol. 14(18), pages 1-19, September.
    4. Cheng Chang & Weibin Chang & Jiangang Ma & Yafu Zhou, 2021. "Steady-State Control of Fuel Cell Based on Boost Mode of a Dual Winding Motor," Energies, MDPI, vol. 14(15), pages 1-15, August.
    5. Carlos Romero & Larizza Delorme & Osvaldo Gonzalez & Magno Ayala & Jorge Rodas & Raul Gregor, 2021. "Algorithm for Implementation of Optimal Vector Combinations in Model Predictive Current Control of Six-Phase Induction Machines," Energies, MDPI, vol. 14(13), pages 1-15, June.
    6. Tiago Oliveira & Luís Caseiro & André Mendes & Sérgio Cruz & Marina Perdigão, 2021. "Model Predictive Control for Paralleled Uninterruptible Power Supplies with an Additional Inverter Leg for Load-Side Neutral Connection," Energies, MDPI, vol. 14(8), pages 1-29, April.
    7. Juan Carlos Travieso-Torres & Manuel A. Duarte-Mermoud & Matías Díaz & Camilo Contreras-Jara & Francisco Hernández, 2022. "Closed-Loop Adaptive High-Starting Torque Scalar Control Scheme for Induction Motor Variable Speed Drives," Energies, MDPI, vol. 15(10), pages 1-15, May.
    8. Andriy Chaban & Marek Lis & Andrzej Szafraniec, 2022. "Voltage Stabilisation of a Drive System Including a Power Transformer and Asynchronous and Synchronous Motors of Susceptible Motion Transmission," Energies, MDPI, vol. 15(3), pages 1-22, January.
    9. Mohamed Derbeli & Cristian Napole & Oscar Barambones & Jesus Sanchez & Isidro Calvo & Pablo Fernández-Bustamante, 2021. "Maximum Power Point Tracking Techniques for Photovoltaic Panel: A Review and Experimental Applications," Energies, MDPI, vol. 14(22), pages 1-31, November.
    10. Xuesong Zhou & Chenglong Wang & Youjie Ma, 2020. "Vector Speed Regulation of an Asynchronous Motor Based on Improved First-Order Linear Active Disturbance Rejection Technology," Energies, MDPI, vol. 13(9), pages 1-20, May.
    11. Maria G. Ioannides & Elias B. Koukoutsis & Anastasios P. Stamelos & Stylianos A. Papazis & Erofili E. Stamataki & Athanasios Papoutsidakis & Vasilios Vikentios & Nikolaos Apostolakis & Michael E. Stam, 2023. "Design and Operation of Internet of Things-Based Monitoring Control System for Induction Machines," Energies, MDPI, vol. 16(7), pages 1-22, March.
    12. Osvaldo Gonzalez & Magno Ayala & Jesus Doval-Gandoy & Jorge Rodas & Raul Gregor & Marco Rivera, 2019. "Predictive-Fixed Switching Current Control Strategy Applied to Six-Phase Induction Machine," Energies, MDPI, vol. 12(12), pages 1-14, June.
    13. Mourad Sellah & Abdellah Kouzou & Mostefa Mohamed-Seghir & Mohamed Mounir Rezaoui & Ralph Kennel & Mohamed Abdelrahem, 2021. "Improved DTC-SVM Based on Input-Output Feedback Linearization Technique Applied on DOEWIM Powered by Two Dual Indirect Matrix Converters," Energies, MDPI, vol. 14(18), pages 1-23, September.
    14. Swati Paliwal & Sanjay Kumar Sinha & Yogesh Kumar Chauhan, 2019. "Gravitational search algorithm based optimization technique for enhancing the performance of self excited induction generator," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 1082-1090, October.
    15. Muhammad Zubair Asif Bhatti & Abubakar Siddique & Waseem Aslam & Shahid Atiq & Hussain Sarwar Khan, 2023. "Improved Model Predictive Direct Power Control for Parallel Distributed Generation in Grid-Tied Microgrids," Energies, MDPI, vol. 16(3), pages 1-22, February.
    16. Yassine Kali & Maarouf Saad & Jesus Doval-Gandoy & Jorge Rodas, 2021. "Discrete Terminal Super-Twisting Current Control of a Six-Phase Induction Motor," Energies, MDPI, vol. 14(5), pages 1-14, March.
    17. Marcin Kaminski, 2020. "Nature-Inspired Algorithm Implemented for Stable Radial Basis Function Neural Controller of Electric Drive with Induction Motor," Energies, MDPI, vol. 13(24), pages 1-25, December.
    18. Sergey Goolak & Borys Liubarskyi & Ievgen Riabov & Vaidas Lukoševičius & Artūras Keršys & Sigitas Kilikevičius, 2023. "Analysis of the Efficiency of Traction Drive Control Systems of Electric Locomotives with Asynchronous Traction Motors," Energies, MDPI, vol. 16(9), pages 1-30, April.
    19. Rajko Svečko & Dušan Gleich & Amor Chowdhury & Andrej Sarjaš, 2019. "Sub-Optimal Second-Order Sliding Mode Controller Parameters’ Selection for a Positioning System with a Synchronous Reluctance Motor," Energies, MDPI, vol. 12(10), pages 1-22, May.
    20. Mateusz Malarczyk & Mateusz Zychlewicz & Radoslaw Stanislawski & Marcin Kaminski, 2023. "Electric Drive with an Adaptive Controller and Wireless Communication System," Future Internet, MDPI, vol. 15(2), pages 1-20, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:14:p:2715-:d:248778. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.