IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v15y2023i2p49-d1049192.html
   My bibliography  Save this article

Electric Drive with an Adaptive Controller and Wireless Communication System

Author

Listed:
  • Mateusz Malarczyk

    (Department of Electrical Machines, Drives and Measurements, Faculty of Electrical Engineering, Wroclaw University of Science and Technology, 19 Smoluchowskiego St., 50-372 Wroclaw, Poland)

  • Mateusz Zychlewicz

    (Department of Electrical Machines, Drives and Measurements, Faculty of Electrical Engineering, Wroclaw University of Science and Technology, 19 Smoluchowskiego St., 50-372 Wroclaw, Poland)

  • Radoslaw Stanislawski

    (Department of Electrical Machines, Drives and Measurements, Faculty of Electrical Engineering, Wroclaw University of Science and Technology, 19 Smoluchowskiego St., 50-372 Wroclaw, Poland)

  • Marcin Kaminski

    (Department of Electrical Machines, Drives and Measurements, Faculty of Electrical Engineering, Wroclaw University of Science and Technology, 19 Smoluchowskiego St., 50-372 Wroclaw, Poland)

Abstract

In this paper, the problem of the remote control of electric drives with a complex mechanical structure is discussed. Oscillations of state variables and control precision are the main issues found in such applications. The article proposes a smart, IoT-enabled controller, which allows remote communication with a drive. To solve the problem of speed oscillations and to make the system robust to parameter uncertainty, an adaptive controller with two neural networks is designed. First, numerical tests are conducted in a Matlab/Simulink environment to examine the operation of the proposed control strategy. Afterwards, the obtained results are verified in a laboratory setup equipped with a 0.5 kW electric motor. Remote access is provided by a low-cost, ARM-based ESP32 microcontroller. Usually, virtual instruments used to communicate with remote devices require specific software, which may be expensive and pose compatibility problems. Therefore, the main contribution of the article is the creation of a low-cost, web-based Human-Machine Interface (HMI) with an asynchronous server utility provided by the ESP32 that allows remote control and data acquisition of electric drive state variables.

Suggested Citation

  • Mateusz Malarczyk & Mateusz Zychlewicz & Radoslaw Stanislawski & Marcin Kaminski, 2023. "Electric Drive with an Adaptive Controller and Wireless Communication System," Future Internet, MDPI, vol. 15(2), pages 1-20, January.
  • Handle: RePEc:gam:jftint:v:15:y:2023:i:2:p:49-:d:1049192
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/15/2/49/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/15/2/49/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Erik Aranburu & Ganix Lasa & Jon Kepa Gerrikagoitia & Maitane Mazmela, 2020. "Case Study of the Experience Capturer Evaluation Tool in the Design Process of an Industrial HMI," Sustainability, MDPI, vol. 12(15), pages 1-10, August.
    2. Chih-Hong Lin, 2020. "Permanent-Magnet Synchronous Motor Drive System Using Backstepping Control with Three Adaptive Rules and Revised Recurring Sieved Pollaczek Polynomials Neural Network with Reformed Grey Wolf Optimizat," Energies, MDPI, vol. 13(22), pages 1-33, November.
    3. Dimitris Mourtzis & John Angelopoulos & Nikos Panopoulos, 2022. "A Literature Review of the Challenges and Opportunities of the Transition from Industry 4.0 to Society 5.0," Energies, MDPI, vol. 15(17), pages 1-29, August.
    4. Piotr Derugo & Krzysztof Szabat & Tomasz Pajchrowski & Krzysztof Zawirski, 2022. "Fuzzy Adaptive Type II Controller for Two-Mass System," Energies, MDPI, vol. 15(2), pages 1-24, January.
    5. Hannan, M.A. & Ali, Jamal A. & Mohamed, Azah & Hussain, Aini, 2018. "Optimization techniques to enhance the performance of induction motor drives: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1611-1626.
    6. Rafal Szczepanski & Marcin Kaminski & Tomasz Tarczewski, 2020. "Auto-Tuning Process of State Feedback Speed Controller Applied for Two-Mass System," Energies, MDPI, vol. 13(12), pages 1-16, June.
    7. Muhammad Usama & Jaehong Kim, 2021. "Improved Self-Sensing Speed Control of IPMSM Drive Based on Cascaded Nonlinear Control," Energies, MDPI, vol. 14(8), pages 1-21, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming-Fa Tsai & Chung-Shi Tseng & Po-Jen Cheng, 2021. "Implementation of an FPGA-Based Current Control and SVPWM ASIC with Asymmetric Five-Segment Switching Scheme for AC Motor Drives," Energies, MDPI, vol. 14(5), pages 1-23, March.
    2. Hassan Alimam & Giovanni Mazzuto & Marco Ortenzi & Filippo Emanuele Ciarapica & Maurizio Bevilacqua, 2023. "Intelligent Retrofitting Paradigm for Conventional Machines towards the Digital Triplet Hierarchy," Sustainability, MDPI, vol. 15(2), pages 1-30, January.
    3. Marcin Kaminski & Tomasz Tarczewski, 2023. "Neural Network Applications in Electrical Drives—Trends in Control, Estimation, Diagnostics, and Construction," Energies, MDPI, vol. 16(11), pages 1-25, May.
    4. Iker Legarda & Ion Iriarte & Maya Hoveskog & Daniel Justel-Lozano, 2021. "A Model for Measuring and Managing the Impact of Design on the Organization: Insights from Four Companies," Sustainability, MDPI, vol. 13(22), pages 1-23, November.
    5. Hsing-Chun Hung & Yuh-Wen Chen, 2023. "Striving to Achieve United Nations Sustainable Development Goals of Taiwanese SMEs by Adopting Industry 4.0," Sustainability, MDPI, vol. 15(3), pages 1-18, January.
    6. Chris Turner & John Oyekan & Wolfgang Garn & Cian Duggan & Khaled Abdou, 2022. "Industry 5.0 and the Circular Economy: Utilizing LCA with Intelligent Products," Sustainability, MDPI, vol. 14(22), pages 1-21, November.
    7. Radoslaw Stanislawski & Jules-Raymond Tapamo & Marcin Kaminski, 2023. "Virtual Signal Calculation Using Radial Neural Model Applied in a State Controller of a Two-Mass System," Energies, MDPI, vol. 16(15), pages 1-23, July.
    8. Padmanathan Kasinathan & Rishi Pugazhendhi & Rajvikram Madurai Elavarasan & Vigna Kumaran Ramachandaramurthy & Vinoth Ramanathan & Senthilkumar Subramanian & Sachin Kumar & Kamalakannan Nandhagopal & , 2022. "Realization of Sustainable Development Goals with Disruptive Technologies by Integrating Industry 5.0, Society 5.0, Smart Cities and Villages," Sustainability, MDPI, vol. 14(22), pages 1-31, November.
    9. Jacek Kabziński & Przemysław Mosiołek, 2022. "Observer-Based, Robust Position Tracking in Two-Mass Drive System," Energies, MDPI, vol. 15(23), pages 1-28, November.
    10. Dimitris Mourtzis & John Angelopoulos & Nikos Panopoulos, 2023. "The Future of the Human–Machine Interface (HMI) in Society 5.0," Future Internet, MDPI, vol. 15(5), pages 1-25, April.
    11. Krzysztof Szabat & Tomasz Pajchrowski & Tomasz Tarczewski, 2021. "Modern Electrical Drives: Trends, Problems, and Challenges," Energies, MDPI, vol. 15(1), pages 1-4, December.
    12. Juan Carlos Travieso-Torres & Manuel A. Duarte-Mermoud & Matías Díaz & Camilo Contreras-Jara & Francisco Hernández, 2022. "Closed-Loop Adaptive High-Starting Torque Scalar Control Scheme for Induction Motor Variable Speed Drives," Energies, MDPI, vol. 15(10), pages 1-15, May.
    13. Catherine Marinagi & Panagiotis Reklitis & Panagiotis Trivellas & Damianos Sakas, 2023. "The Impact of Industry 4.0 Technologies on Key Performance Indicators for a Resilient Supply Chain 4.0," Sustainability, MDPI, vol. 15(6), pages 1-31, March.
    14. Muhammad Zafar Yaqub & Abdullah Alsabban, 2023. "Industry-4.0-Enabled Digital Transformation: Prospects, Instruments, Challenges, and Implications for Business Strategies," Sustainability, MDPI, vol. 15(11), pages 1-33, May.
    15. Andriy Chaban & Marek Lis & Andrzej Szafraniec, 2022. "Voltage Stabilisation of a Drive System Including a Power Transformer and Asynchronous and Synchronous Motors of Susceptible Motion Transmission," Energies, MDPI, vol. 15(3), pages 1-22, January.
    16. Xuesong Zhou & Chenglong Wang & Youjie Ma, 2020. "Vector Speed Regulation of an Asynchronous Motor Based on Improved First-Order Linear Active Disturbance Rejection Technology," Energies, MDPI, vol. 13(9), pages 1-20, May.
    17. Maria G. Ioannides & Elias B. Koukoutsis & Anastasios P. Stamelos & Stylianos A. Papazis & Erofili E. Stamataki & Athanasios Papoutsidakis & Vasilios Vikentios & Nikolaos Apostolakis & Michael E. Stam, 2023. "Design and Operation of Internet of Things-Based Monitoring Control System for Induction Machines," Energies, MDPI, vol. 16(7), pages 1-22, March.
    18. Swati Paliwal & Sanjay Kumar Sinha & Yogesh Kumar Chauhan, 2019. "Gravitational search algorithm based optimization technique for enhancing the performance of self excited induction generator," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 1082-1090, October.
    19. Ardiansyah Putra, 2023. "The Literature Review Analysis of The Human Resources Development in The Industry Era 4.0 Towards The Era of society 5.0," Technium, Technium Science, vol. 20(1), pages 16-24.
    20. Tian-Hua Liu, 2021. "Design and Control of Electrical Motor Drives," Energies, MDPI, vol. 14(22), pages 1-3, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:15:y:2023:i:2:p:49-:d:1049192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.