IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1441-d1053900.html
   My bibliography  Save this article

Improved Model Predictive Direct Power Control for Parallel Distributed Generation in Grid-Tied Microgrids

Author

Listed:
  • Muhammad Zubair Asif Bhatti

    (Department of Electrical Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan 64200, Pakistan)

  • Abubakar Siddique

    (Department of Electrical Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan 64200, Pakistan)

  • Waseem Aslam

    (Department of Electrical Engineering, University of Sargodha (UOS), Sargodha 40100, Pakistan)

  • Shahid Atiq

    (Department of Electrical Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim Yar Khan 64200, Pakistan)

  • Hussain Sarwar Khan

    (Department of Electrical Engineering, University of Vaasa, 65200 Vaasa, Finland)

Abstract

This research proposes an improved finite control set direct power model predictive control method (FCS-DPMPC) for grid-tie distributed generation (DG). FCS-DPMPC predicts the system outcomes using the system model. During the next sampling time, a voltage vector is defined using the cost function to minimize the power ripple, consequently allowing flexibility for power regulation. Furthermore, the impact of implementing a one-step delay is studied and compensated through a model forecast pattern. In addition, a new two-step horizon technique has been developed to minimize switching frequency and computation burden. Simulation results for single DG and parallel operated DGs in a grid-tie manner confirm the effectiveness of the suggested control strategy, which signifies that this is an appropriate approach for distributed generation in microgrids.

Suggested Citation

  • Muhammad Zubair Asif Bhatti & Abubakar Siddique & Waseem Aslam & Shahid Atiq & Hussain Sarwar Khan, 2023. "Improved Model Predictive Direct Power Control for Parallel Distributed Generation in Grid-Tied Microgrids," Energies, MDPI, vol. 16(3), pages 1-22, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1441-:d:1053900
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1441/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1441/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hussain Sarwar Khan & Muhammad Aamir & Muhammad Ali & Asad Waqar & Syed Umaid Ali & Junaid Imtiaz, 2019. "Finite Control Set Model Predictive Control for Parallel Connected Online UPS System under Unbalanced and Nonlinear Loads," Energies, MDPI, vol. 12(4), pages 1-20, February.
    2. Mohamed Abdelrahem & Ralph Kennel, 2016. "Fault-Ride through Strategy for Permanent-Magnet Synchronous Generators in Variable-Speed Wind Turbines," Energies, MDPI, vol. 9(12), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Zubair Asif Bhatti & Abubakar Siddique & Waseem Aslam & Shahid Atiq, 2023. "Design and Analysis of a Hybrid Stand-Alone Microgrid," Energies, MDPI, vol. 17(1), pages 1-28, December.
    2. Escobar, Eros D. & Betancur, Daniel & Manrique, Tatiana & Isaac, Idi A., 2023. "Model predictive real-time architecture for secondary voltage control of microgrids," Applied Energy, Elsevier, vol. 345(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luís Caseiro & André Mendes, 2021. "Fault Analysis and Non-Redundant Fault Tolerance in 3-Level Double Conversion UPS Systems Using Finite-Control-Set Model Predictive Control," Energies, MDPI, vol. 14(8), pages 1-39, April.
    2. Quan Zhou & Taotao Xiong & Mubin Wang & Chenmeng Xiang & Qingpeng Xu, 2017. "Diagnosis and Early Warning of Wind Turbine Faults Based on Cluster Analysis Theory and Modified ANFIS," Energies, MDPI, vol. 10(7), pages 1-15, July.
    3. Xiangwu Yan & Linlin Yang & Tiecheng Li, 2021. "The LVRT Control Scheme for PMSG-Based Wind Turbine Generator Based on the Coordinated Control of Rotor Overspeed and Supercapacitor Energy Storage," Energies, MDPI, vol. 14(2), pages 1-22, January.
    4. Mojtaba Nasiri & Saleh Mobayen & Behdad Faridpak & Afef Fekih & Arthur Chang, 2020. "Small-Signal Modeling of PMSG-Based Wind Turbine for Low Voltage Ride-Through and Artificial Intelligent Studies," Energies, MDPI, vol. 13(24), pages 1-18, December.
    5. Tiago Oliveira & Luís Caseiro & André Mendes & Sérgio Cruz & Marina Perdigão, 2021. "Model Predictive Control for Paralleled Uninterruptible Power Supplies with an Additional Inverter Leg for Load-Side Neutral Connection," Energies, MDPI, vol. 14(8), pages 1-29, April.
    6. Maha Zoghlami & Ameni Kadri & Faouzi Bacha, 2018. "Analysis and Application of the Sliding Mode Control Approach in the Variable-Wind Speed Conversion System for the Utility of Grid Connection," Energies, MDPI, vol. 11(4), pages 1-17, March.
    7. Fernando Lino & Jefferson Assis & Darlan A. Fernandes & Rogerio Jacomini & Fabiano F. Costa & Alfeu J. Sguarezi Filho, 2021. "One-Cycle Fourier Finite Position Set PLL," Energies, MDPI, vol. 14(7), pages 1-17, March.
    8. Mostafa Ahmed & Mohamed Abdelrahem & Ralph Kennel, 2020. "Highly Efficient and Robust Grid Connected Photovoltaic System Based Model Predictive Control with Kalman Filtering Capability," Sustainability, MDPI, vol. 12(11), pages 1-22, June.
    9. Mohamed Abdelrahem & José Rodríguez & Ralph Kennel, 2020. "Improved Direct Model Predictive Control for Grid-Connected Power Converters," Energies, MDPI, vol. 13(10), pages 1-14, May.
    10. Vijay Kumar Singh & Ravi Nath Tripathi & Tsuyoshi Hanamoto, 2020. "FPGA-Based Implementation of Finite Set-MPC for a VSI System Using XSG-Based Modeling," Energies, MDPI, vol. 13(1), pages 1-18, January.
    11. Agnieszka Kowal G. & Manuel R. Arahal & Cristina Martin & Federico Barrero, 2019. "Constraint Satisfaction in Current Control of a Five-Phase Drive with Locally Tuned Predictive Controllers," Energies, MDPI, vol. 12(14), pages 1-9, July.
    12. Tiago Oliveira & Luís Caseiro & André Mendes & Sérgio Cruz, 2020. "Finite Control Set Model Predictive Control for Paralleled Uninterruptible Power Supplies," Energies, MDPI, vol. 13(13), pages 1-30, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1441-:d:1053900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.