IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i10p1855-d231467.html
   My bibliography  Save this article

Sub-Optimal Second-Order Sliding Mode Controller Parameters’ Selection for a Positioning System with a Synchronous Reluctance Motor

Author

Listed:
  • Rajko Svečko

    (University of Maribor, Faculty of Electrical Engineering and Computer Science, Koroška cesta 45, 2000 Maribor, Slovenia)

  • Dušan Gleich

    (University of Maribor, Faculty of Electrical Engineering and Computer Science, Koroška cesta 45, 2000 Maribor, Slovenia)

  • Amor Chowdhury

    (Margento R&D, Gosposvetska cesta 84, 2000 Maribor, Slovenia)

  • Andrej Sarjaš

    (University of Maribor, Faculty of Electrical Engineering and Computer Science, Koroška cesta 45, 2000 Maribor, Slovenia)

Abstract

This paper discusses nonlinear controller structure design for a synchronous reluctance motor (SynRM). The SynRM is represented with a nonlinear dynamic model. All presented nonlinearities of the SynRM are respected in the controller design procedure. A nonlinear controller policy is used for a SynRM positing system. The nonlinear controller design is based on the chattering alleviation technique for the super-twisted algorithm (STA). The alleviation technique assumes the presence of a fast parasitic dynamic, or fast, actuator. Based on the motor structure, the STA controller is designed only for the mechanical subsystem, where the electrical part presents the parasitic dynamic, and is taken in to account in the chattering suppression procedure. Chattering rejection is based on the STA describing function and harmonic balance equation. The approach allows determination of fast oscillation parameters, such as amplitude and frequency of oscillation. The conditions for the controller parameters’ selection are derived with regard to the given oscillation parameters. The derived conditions cover the stability analysis for the STA controller, as well as the stability condition for current controllers and chattering amplitude minimization. The result is confirmed with an example.

Suggested Citation

  • Rajko Svečko & Dušan Gleich & Amor Chowdhury & Andrej Sarjaš, 2019. "Sub-Optimal Second-Order Sliding Mode Controller Parameters’ Selection for a Positioning System with a Synchronous Reluctance Motor," Energies, MDPI, vol. 12(10), pages 1-22, May.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1855-:d:231467
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/10/1855/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/10/1855/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Onofre A. Morfin & Carlos E. Castañeda & Antonio Valderrabano-Gonzalez & Miguel Hernandez-Gonzalez & Fredy A. Valenzuela, 2017. "A Real-Time SOSM Super-Twisting Technique for a Compound DC Motor Velocity Controller," Energies, MDPI, vol. 10(9), pages 1-18, August.
    2. Yassine Kali & Magno Ayala & Jorge Rodas & Maarouf Saad & Jesus Doval-Gandoy & Raul Gregor & Khalid Benjelloun, 2019. "Current Control of a Six-Phase Induction Machine Drive Based on Discrete-Time Sliding Mode with Time Delay Estimation," Energies, MDPI, vol. 12(1), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aleš Hace, 2019. "The Advanced Control Approach based on SMC Design for the High-Fidelity Haptic Power Lever of a Small Hybrid Electric Aircraft," Energies, MDPI, vol. 12(15), pages 1-31, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdul Rehman Yasin & Muhammad Ashraf & Aamer Iqbal Bhatti, 2019. "A Novel Filter Extracted Equivalent Control Based Fixed Frequency Sliding Mode Approach for Power Electronic Converters," Energies, MDPI, vol. 12(5), pages 1-14, March.
    2. Feng Cai & Ke Li & Xiaodong Sun & Minkai Wu, 2021. "Air-Gap Flux Oriented Vector Control Based on Reduced-Order Flux Observer for EESM," Energies, MDPI, vol. 14(18), pages 1-19, September.
    3. Cheng Chang & Weibin Chang & Jiangang Ma & Yafu Zhou, 2021. "Steady-State Control of Fuel Cell Based on Boost Mode of a Dual Winding Motor," Energies, MDPI, vol. 14(15), pages 1-15, August.
    4. Zhigang Gao & Qi Lu, 2017. "Using an Integrated Script Control Unit (ISCU) to Assist the Power Electronics Education," Energies, MDPI, vol. 10(11), pages 1-19, November.
    5. Carlos Romero & Larizza Delorme & Osvaldo Gonzalez & Magno Ayala & Jorge Rodas & Raul Gregor, 2021. "Algorithm for Implementation of Optimal Vector Combinations in Model Predictive Current Control of Six-Phase Induction Machines," Energies, MDPI, vol. 14(13), pages 1-15, June.
    6. Mohamed Derbeli & Cristian Napole & Oscar Barambones & Jesus Sanchez & Isidro Calvo & Pablo Fernández-Bustamante, 2021. "Maximum Power Point Tracking Techniques for Photovoltaic Panel: A Review and Experimental Applications," Energies, MDPI, vol. 14(22), pages 1-31, November.
    7. Osvaldo Gonzalez & Magno Ayala & Jesus Doval-Gandoy & Jorge Rodas & Raul Gregor & Marco Rivera, 2019. "Predictive-Fixed Switching Current Control Strategy Applied to Six-Phase Induction Machine," Energies, MDPI, vol. 12(12), pages 1-14, June.
    8. Mourad Sellah & Abdellah Kouzou & Mostefa Mohamed-Seghir & Mohamed Mounir Rezaoui & Ralph Kennel & Mohamed Abdelrahem, 2021. "Improved DTC-SVM Based on Input-Output Feedback Linearization Technique Applied on DOEWIM Powered by Two Dual Indirect Matrix Converters," Energies, MDPI, vol. 14(18), pages 1-23, September.
    9. Yassine Kali & Maarouf Saad & Jesus Doval-Gandoy & Jorge Rodas, 2021. "Discrete Terminal Super-Twisting Current Control of a Six-Phase Induction Motor," Energies, MDPI, vol. 14(5), pages 1-14, March.
    10. Nicolás Toro-García & Yeison A. Garcés-Gómez & Fredy E. Hoyos, 2019. "Discrete and Continuous Model of Three-Phase Linear Induction Motors “LIMs” Considering Attraction Force," Energies, MDPI, vol. 12(4), pages 1-11, February.
    11. Onofre A. Morfin & Riemann Ruiz-Cruz & Jesus I. Hernández & Carlos E. Castañeda & Reymundo Ramírez-Betancour & Fredy A. Valenzuela-Murillo, 2021. "Real-Time Sensorless Robust Velocity Controller Applied to a DC-Motor for Emulating a Wind Turbine," Energies, MDPI, vol. 14(4), pages 1-15, February.
    12. Agnieszka Kowal G. & Manuel R. Arahal & Cristina Martin & Federico Barrero, 2019. "Constraint Satisfaction in Current Control of a Five-Phase Drive with Locally Tuned Predictive Controllers," Energies, MDPI, vol. 12(14), pages 1-9, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:10:p:1855-:d:231467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.