IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5625-d630922.html
   My bibliography  Save this article

Improved DTC-SVM Based on Input-Output Feedback Linearization Technique Applied on DOEWIM Powered by Two Dual Indirect Matrix Converters

Author

Listed:
  • Mourad Sellah

    (Applied Automation and Industrial Diagnosis Laboratory (LAADI), Faculty of Science and Technology, Djelfa University, Djelfa 17000, Algeria)

  • Abdellah Kouzou

    (Applied Automation and Industrial Diagnosis Laboratory (LAADI), Faculty of Science and Technology, Djelfa University, Djelfa 17000, Algeria
    Electrical and Electronics Engineering Department, Nisantasi University, Istanbul 34398, Turkey)

  • Mostefa Mohamed-Seghir

    (Department of Ship Automation, Gdynia Maritime University, 81-225 Gdynia, Poland)

  • Mohamed Mounir Rezaoui

    (Applied Automation and Industrial Diagnosis Laboratory (LAADI), Faculty of Science and Technology, Djelfa University, Djelfa 17000, Algeria)

  • Ralph Kennel

    (Institute for Electrical Drive Systems and Power Electronics (EAL), Technical University of Munich (TUM), 80333 Munich, Germany)

  • Mohamed Abdelrahem

    (Institute for Electrical Drive Systems and Power Electronics (EAL), Technical University of Munich (TUM), 80333 Munich, Germany
    Electrical Engineering Department, Faculty of Engineering, Assiut University, Assiut 71516, Egypt)

Abstract

This paper focuses on the application of the direct torque control based on space vector modulation (DTC-SVM), combined with the input–output feedback linearization (IOFL) technique on a three-phase dual open-end windings induction motor (DOEWIM) fed by two dual indirect matrix converters. The main aim of integrating the non-linear technique is to overcome the main drawbacks met within the application of the conventional DTC-SVM on dual-stator induction motor (DSIM), such as the torque and flux ripples reduction, the stator harmonics current minimization, and the elimination of the common-mode voltage (CMV). Furthermore, it is proved in this paper that the proposed control on DOEWIN can ensure more flexibility versus speed reverse and variation, load torque changes, and motor parameters variation. The obtained results prove the validity of the proposed control on the studied induction motor topology in ensuring the main aforementioned advantages compared to the conventional DTC-SVM control on DSIM, which presents a promising solution, especially in industrial applications in which high-power motors are required.

Suggested Citation

  • Mourad Sellah & Abdellah Kouzou & Mostefa Mohamed-Seghir & Mohamed Mounir Rezaoui & Ralph Kennel & Mohamed Abdelrahem, 2021. "Improved DTC-SVM Based on Input-Output Feedback Linearization Technique Applied on DOEWIM Powered by Two Dual Indirect Matrix Converters," Energies, MDPI, vol. 14(18), pages 1-23, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5625-:d:630922
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5625/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5625/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nguyen Dinh Tuyen & Phan Quoc Dzung, 2017. "Space Vector Modulation for an Indirect Matrix Converter with Improved Input Power Factor," Energies, MDPI, vol. 10(5), pages 1-13, April.
    2. Yassine Kali & Maarouf Saad & Jesus Doval-Gandoy & Jorge Rodas, 2021. "Discrete Terminal Super-Twisting Current Control of a Six-Phase Induction Motor," Energies, MDPI, vol. 14(5), pages 1-14, March.
    3. Salvatore Foti & Antonio Testa & Salvatore De Caro & Tommaso Scimone & Giacomo Scelba & Giuseppe Scarcella, 2019. "Multi-Level Open End Windings Multi-Motor Drives," Energies, MDPI, vol. 12(5), pages 1-19, March.
    4. Yeongsu Bak & Eunsil Lee & Kyo-Beum Lee, 2015. "Indirect Matrix Converter for Hybrid Electric Vehicle Application with Three-Phase and Single-Phase Outputs," Energies, MDPI, vol. 8(5), pages 1-18, April.
    5. Yassine Kali & Magno Ayala & Jorge Rodas & Maarouf Saad & Jesus Doval-Gandoy & Raul Gregor & Khalid Benjelloun, 2019. "Current Control of a Six-Phase Induction Machine Drive Based on Discrete-Time Sliding Mode with Time Delay Estimation," Energies, MDPI, vol. 12(1), pages 1-17, January.
    6. Riedemann, Javier & Andrade, Iván & Peña, Rubén & Blasco-Gimenez, Ramón & Clare, Jon & Melín, Pedro & Rivera, Marco, 2016. "Modulation strategies for an open-end winding induction machine fed by a two-output indirect matrix converter," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 130(C), pages 95-111.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Borzou Yousefi & Soodabeh Soleymani & Babak Mozafari & Seid Asghar Gholamian, 2017. "Speed Control of Matrix Converter-Fed Five-Phase Permanent Magnet Synchronous Motors under Unbalanced Voltages," Energies, MDPI, vol. 10(10), pages 1-21, September.
    2. Bowei Zou & Yougui Guo & Xi Xiao & Bowen Yang & Xiao Wang & Mingzhang Shi & Yulin Tu, 2020. "Performance Improvement of Matrix Converter Direct Torque Control System," Energies, MDPI, vol. 13(12), pages 1-17, June.
    3. Abdul Rehman Yasin & Muhammad Ashraf & Aamer Iqbal Bhatti, 2019. "A Novel Filter Extracted Equivalent Control Based Fixed Frequency Sliding Mode Approach for Power Electronic Converters," Energies, MDPI, vol. 12(5), pages 1-14, March.
    4. Yong-Dae Kwon & Jin-Hyuk Park & Kyo-Beum Lee, 2018. "Improving Line Current Distortion in Single-Phase Vienna Rectifiers Using Model-Based Predictive Control," Energies, MDPI, vol. 11(5), pages 1-22, May.
    5. Feng Cai & Ke Li & Xiaodong Sun & Minkai Wu, 2021. "Air-Gap Flux Oriented Vector Control Based on Reduced-Order Flux Observer for EESM," Energies, MDPI, vol. 14(18), pages 1-19, September.
    6. Yeongsu Bak, 2022. "Dynamic Characteristic Improvement of Integrated On-Board Charger Using a Model Predictive Control," Energies, MDPI, vol. 15(22), pages 1-16, November.
    7. Federico Barrero & Jorge Rodas, 2021. "Control of Power Electronics Converters and Electric Motor Drives," Energies, MDPI, vol. 14(15), pages 1-2, July.
    8. Yeongsu Bak & June-Seok Lee & Kyo-Beum Lee, 2016. "Balanced Current Control Strategy for Current Source Rectifier Stage of Indirect Matrix Converter under Unbalanced Grid Voltage Conditions," Energies, MDPI, vol. 10(1), pages 1-18, December.
    9. Cheng Chang & Weibin Chang & Jiangang Ma & Yafu Zhou, 2021. "Steady-State Control of Fuel Cell Based on Boost Mode of a Dual Winding Motor," Energies, MDPI, vol. 14(15), pages 1-15, August.
    10. Shuang Feng & Chaofan Wei & Jiaxing Lei, 2019. "Reduction of Prediction Errors for the Matrix Converter with an Improved Model Predictive Control," Energies, MDPI, vol. 12(15), pages 1-20, August.
    11. Mauricio Muñoz-Ramírez & Hugo Valderrama-Blavi & Marco Rivera & Carlos Restrepo, 2019. "An Approach to Natural Sampling Using a Digital Sampling Technique for SPWM Multilevel Inverter Modulation," Energies, MDPI, vol. 12(15), pages 1-16, July.
    12. Carlos Romero & Larizza Delorme & Osvaldo Gonzalez & Magno Ayala & Jorge Rodas & Raul Gregor, 2021. "Algorithm for Implementation of Optimal Vector Combinations in Model Predictive Current Control of Six-Phase Induction Machines," Energies, MDPI, vol. 14(13), pages 1-15, June.
    13. Mohamed Derbeli & Cristian Napole & Oscar Barambones & Jesus Sanchez & Isidro Calvo & Pablo Fernández-Bustamante, 2021. "Maximum Power Point Tracking Techniques for Photovoltaic Panel: A Review and Experimental Applications," Energies, MDPI, vol. 14(22), pages 1-31, November.
    14. Shujing Li & Zewen Wang & Yan Yan & Tingna Shi, 2021. "Finite Set Model Predictive Control of a Dual-Motor Torque Synchronization System Fed by an Indirect Matrix Converter," Energies, MDPI, vol. 14(5), pages 1-17, March.
    15. Osvaldo Gonzalez & Magno Ayala & Jesus Doval-Gandoy & Jorge Rodas & Raul Gregor & Marco Rivera, 2019. "Predictive-Fixed Switching Current Control Strategy Applied to Six-Phase Induction Machine," Energies, MDPI, vol. 12(12), pages 1-14, June.
    16. Mateusz Pietrala & Piotr Leśniewski & Andrzej Bartoszewicz, 2021. "Sliding Mode Control with Minimization of the Regulation Time in the Presence of Control Signal and Velocity Constraints," Energies, MDPI, vol. 14(10), pages 1-23, May.
    17. Yassine Kali & Maarouf Saad & Jesus Doval-Gandoy & Jorge Rodas, 2021. "Discrete Terminal Super-Twisting Current Control of a Six-Phase Induction Motor," Energies, MDPI, vol. 14(5), pages 1-14, March.
    18. Ahmed Belila & Mohamed Benbouzid & El-Madjid Berkouk & Yassine Amirat, 2018. "On Energy Management Control of a PV-Diesel-ESS Based Microgrid in a Stand-Alone Context," Energies, MDPI, vol. 11(8), pages 1-23, August.
    19. Qiang Geng & Jiahe Feng & Haojie Sha & Weixi Zhou & Zhanqing Zhou, 2022. "Harmonic Analysis and Attenuation Strategy for a Two-Stage Matrix Converter Fed by Dual-Inverter Based on Pulse Barycenter Method," Energies, MDPI, vol. 15(12), pages 1-20, June.
    20. Rajko Svečko & Dušan Gleich & Amor Chowdhury & Andrej Sarjaš, 2019. "Sub-Optimal Second-Order Sliding Mode Controller Parameters’ Selection for a Positioning System with a Synchronous Reluctance Motor," Energies, MDPI, vol. 12(10), pages 1-22, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5625-:d:630922. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.