IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p3049-d1108771.html
   My bibliography  Save this article

Design and Operation of Internet of Things-Based Monitoring Control System for Induction Machines

Author

Listed:
  • Maria G. Ioannides

    (School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece)

  • Elias B. Koukoutsis

    (School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece)

  • Anastasios P. Stamelos

    (School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece)

  • Stylianos A. Papazis

    (Department of Electrical and Computer Engineering, School of Engineering, Democritus University of Thrace, 67100 Xanthi, Greece)

  • Erofili E. Stamataki

    (School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece)

  • Athanasios Papoutsidakis

    (Programize Hellas AE, 15561 Athens, Greece)

  • Vasilios Vikentios

    (Cosmote, 15124 Athens, Greece)

  • Nikolaos Apostolakis

    (School of Telematic Engineering, Universidad Carlos III de Madrid, Leganés, 28911 Madrid, Spain)

  • Michael E. Stamatakis

    (School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece)

Abstract

The technology of Internet of Things (IoT) can be integrated with systems of electrical machines, for electric drives and wind and solar generation systems, and advance controlling and monitoring. This work presented recent research and progress of electrical drives with IoT technology, regarding design, operation, and trial of the control system for induction motors (ΙΜ). Also, the developed software code and hardware units for speed control were detailed and the results obtained from tests of performance of the ΙΜ integrated with IoT were described. With the IoT integration set-up, the operator can control the frequency values, obtain real-time feedback of the process, and monitor the system during varying loads in steady state. The operation of the ΙΜ system driven by inverter and its monitoring over IoT was proven to have high-accuracy speed control and increased efficiency at supersynchronous speeds. Thus, IoT establishes potentials to become a multipurpose tool in the industrial control of electric drives. This paper established one case study of an IoT set-up and control technique for IM, which is suitable for energy engineering experts in the field of IoT control of industrial equipment.

Suggested Citation

  • Maria G. Ioannides & Elias B. Koukoutsis & Anastasios P. Stamelos & Stylianos A. Papazis & Erofili E. Stamataki & Athanasios Papoutsidakis & Vasilios Vikentios & Nikolaos Apostolakis & Michael E. Stam, 2023. "Design and Operation of Internet of Things-Based Monitoring Control System for Induction Machines," Energies, MDPI, vol. 16(7), pages 1-22, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3049-:d:1108771
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/3049/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/3049/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Usha Sengamalai & Geetha Anbazhagan & T. M. Thamizh Thentral & Pradeep Vishnuram & Tahir Khurshaid & Salah Kamel, 2022. "Three Phase Induction Motor Drive: A Systematic Review on Dynamic Modeling, Parameter Estimation, and Control Schemes," Energies, MDPI, vol. 15(21), pages 1-39, November.
    2. Michael E. Stamatakis & Maria G. Ioannides, 2021. "State Transitions Logical Design for Hybrid Energy Generation with Renewable Energy Sources in LNG Ship," Energies, MDPI, vol. 14(22), pages 1-26, November.
    3. Hannan, M.A. & Ali, Jamal A. & Mohamed, Azah & Hussain, Aini, 2018. "Optimization techniques to enhance the performance of induction motor drives: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1611-1626.
    4. Naser Hossein Motlagh & Mahsa Mohammadrezaei & Julian Hunt & Behnam Zakeri, 2020. "Internet of Things (IoT) and the Energy Sector," Energies, MDPI, vol. 13(2), pages 1-27, January.
    5. Stylianos A. Papazis, 2022. "Integrated Economic Optimization of Hybrid Thermosolar Concentrating System Based on Exact Mathematical Method," Energies, MDPI, vol. 15(19), pages 1-22, September.
    6. Mojtaba Moghimi & Jiannan Liu & Pouya Jamborsalamati & Fida Hasan Md Rafi & Shihanur Rahman & Jahangir Hossain & Sascha Stegen & Junwei Lu, 2018. "Internet of Things Platform for Energy Management in Multi-Microgrid System to Improve Neutral Current Compensation," Energies, MDPI, vol. 11(11), pages 1-22, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Restrepo, Mauricio & Cañizares, Claudio A. & Simpson-Porco, John W. & Su, Peter & Taruc, John, 2021. "Optimization- and Rule-based Energy Management Systems at the Canadian Renewable Energy Laboratory microgrid facility," Applied Energy, Elsevier, vol. 290(C).
    2. Nallapaneni Manoj Kumar & Aneesh A. Chand & Maria Malvoni & Kushal A. Prasad & Kabir A. Mamun & F.R. Islam & Shauhrat S. Chopra, 2020. "Distributed Energy Resources and the Application of AI, IoT, and Blockchain in Smart Grids," Energies, MDPI, vol. 13(21), pages 1-42, November.
    3. Matteo Vaccargiu & Andrea Pinna & Roberto Tonelli & Luisanna Cocco, 2023. "Blockchain in the Energy Sector for SDG Achievement," Sustainability, MDPI, vol. 15(20), pages 1-23, October.
    4. Athanasios Tsipis & Asterios Papamichail & Ioannis Angelis & George Koufoudakis & Georgios Tsoumanis & Konstantinos Oikonomou, 2020. "An Alertness-Adjustable Cloud/Fog IoT Solution for Timely Environmental Monitoring Based on Wildfire Risk Forecasting," Energies, MDPI, vol. 13(14), pages 1-35, July.
    5. Abdul Hasib Siddique & Mehedi Hasan & Sharnali Islam & Khalid Rashid, 2021. "Prospective Smart Distribution Substation in Bangladesh: Modeling and Analysis," Sustainability, MDPI, vol. 13(19), pages 1-20, September.
    6. Stylianos A. Papazis, 2022. "Integrated Economic Optimization of Hybrid Thermosolar Concentrating System Based on Exact Mathematical Method," Energies, MDPI, vol. 15(19), pages 1-22, September.
    7. Hosseini Dehshiri, Seyyed Jalaladdin & Amiri, Maghsoud, 2023. "Evaluating the risks of the internet of things in renewable energy systems using a hybrid fuzzy decision approach," Energy, Elsevier, vol. 285(C).
    8. Germán Arana-Landín & Naiara Uriarte-Gallastegi & Beñat Landeta-Manzano & Iker Laskurain-Iturbe, 2023. "The Contribution of Lean Management—Industry 4.0 Technologies to Improving Energy Efficiency," Energies, MDPI, vol. 16(5), pages 1-19, February.
    9. Krzysztof Bartczak & Stanisław Łobejko, 2022. "The Implementation Environment for a Digital Technology Platform of Renewable Energy Sources," Energies, MDPI, vol. 15(16), pages 1-16, August.
    10. Shabana Urooj & Fadwa Alrowais & Yuvaraja Teekaraman & Hariprasath Manoharan & Ramya Kuppusamy, 2021. "IoT Based Electric Vehicle Application Using Boosting Algorithm for Smart Cities," Energies, MDPI, vol. 14(4), pages 1-16, February.
    11. M. Usman Saleem & Mustafa Shakir & M. Rehan Usman & M. Hamza Tahir Bajwa & Noman Shabbir & Payam Shams Ghahfarokhi & Kamran Daniel, 2023. "Integrating Smart Energy Management System with Internet of Things and Cloud Computing for Efficient Demand Side Management in Smart Grids," Energies, MDPI, vol. 16(12), pages 1-21, June.
    12. Shivam Gupta & Jazmin Campos Zeballos & Gema del Río Castro & Ana Tomičić & Sergio Andrés Morales & Maya Mahfouz & Isimemen Osemwegie & Vicky Phemia Comlan Sessi & Marina Schmitz & Nady Mahmoud & Mnen, 2023. "Operationalizing Digitainability: Encouraging Mindfulness to Harness the Power of Digitalization for Sustainable Development," Sustainability, MDPI, vol. 15(8), pages 1-37, April.
    13. Wen-Cheng Wang & Ngakan Ketut Acwin Dwijendra & Biju Theruvil Sayed & José Ricardo Nuñez Alvarez & Mohammed Al-Bahrani & Aníbal Alviz-Meza & Yulineth Cárdenas-Escrocia, 2023. "Internet of Things Energy Consumption Optimization in Buildings: A Step toward Sustainability," Sustainability, MDPI, vol. 15(8), pages 1-15, April.
    14. Joaquim Amândio Azevedo & Filipe Edgar Santos, 2021. "A More Efficient Technique to Power Home Monitoring Systems Using Controlled Battery Charging," Energies, MDPI, vol. 14(13), pages 1-16, June.
    15. Akhil Joseph & Patil Balachandra, 2020. "Energy Internet, the Future Electricity System: Overview, Concept, Model Structure, and Mechanism," Energies, MDPI, vol. 13(16), pages 1-26, August.
    16. Sheeraz Kirmani & Abdul Mazid & Irfan Ahmad Khan & Manaullah Abid, 2022. "A Survey on IoT-Enabled Smart Grids: Technologies, Architectures, Applications, and Challenges," Sustainability, MDPI, vol. 15(1), pages 1-26, December.
    17. Isaías González & Antonio José Calderón & José María Portalo, 2021. "Innovative Multi-Layered Architecture for Heterogeneous Automation and Monitoring Systems: Application Case of a Photovoltaic Smart Microgrid," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
    18. Golmohamadi, Hessam, 2022. "Demand-side management in industrial sector: A review of heavy industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    19. Olga Pilipczuk, 2020. "Sustainable Smart Cities and Energy Management: The Labor Market Perspective," Energies, MDPI, vol. 13(22), pages 1-24, November.
    20. Seyed Azad Nabavi & Alireza Aslani & Martha A. Zaidan & Majid Zandi & Sahar Mohammadi & Naser Hossein Motlagh, 2020. "Machine Learning Modeling for Energy Consumption of Residential and Commercial Sectors," Energies, MDPI, vol. 13(19), pages 1-22, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3049-:d:1108771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.