IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3489-d812317.html
   My bibliography  Save this article

Closed-Loop Adaptive High-Starting Torque Scalar Control Scheme for Induction Motor Variable Speed Drives

Author

Listed:
  • Juan Carlos Travieso-Torres

    (Department of Industrial Technologies, University of Santiago de Chile, Santiago 9170125, Chile)

  • Manuel A. Duarte-Mermoud

    (Facultad de Ingeniería y Arquitectura, Universidad Central de Chile, Av. Santa Isabel 1186, Santiago 8330601, Chile
    Advanced Mining Technology Center, University of Chile, Av. Tupper 2007, Santiago 8370451, Chile)

  • Matías Díaz

    (Department of Electrical Engineering, University of Santiago de Chile, Santiago 9170125, Chile)

  • Camilo Contreras-Jara

    (Department of Industrial Technologies, University of Santiago de Chile, Santiago 9170125, Chile)

  • Francisco Hernández

    (Department of Industrial Technologies, University of Santiago de Chile, Santiago 9170125, Chile)

Abstract

This article proposes a closed-loop (CL) high-starting torque (HST) scalar control scheme (SCS) for induction motors (IM). It endows the recently proposed HST-SCS with high-output torque capability beyond starting after using an outer speed control loop feeding an inner current control loop with adaptive controllers. Presenting a cascade normalized adaptive passivity-based controller (N-APBC) for nonlinear systems encompassing the IM allows obtaining this result. It extends the normalized adaptive controller for the cascade case. As a result, it keeps the HST-SCS simple control scheme without needing variable observers or parameter estimators and employing tuning information only from the motor nameplate and datasheet. Test bench experiments with a 10 HP motor validate the proposal’s effectiveness. Comparative experimental results show that the CL HST-SCS has a required stator phase voltage lower than HST-SCS. The CL HST-SCS applies the adaptive starting voltage curve for a more extended time than HST-SCS, from the start to 1.9 s versus 1.2 s, respectively. Hence, CL HST-SCS assures HST not only for starting but almost up to 600 rpm, resulting in a smoother transient behavior than HST-SCS under this speed.

Suggested Citation

  • Juan Carlos Travieso-Torres & Manuel A. Duarte-Mermoud & Matías Díaz & Camilo Contreras-Jara & Francisco Hernández, 2022. "Closed-Loop Adaptive High-Starting Torque Scalar Control Scheme for Induction Motor Variable Speed Drives," Energies, MDPI, vol. 15(10), pages 1-15, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3489-:d:812317
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3489/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3489/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Juan Carlos Travieso-Torres & Manuel A. Duarte-Mermoud, 2022. "Normalized Model Reference Adaptive Control Applied to High Starting Torque Scalar Control Scheme for Induction Motors," Energies, MDPI, vol. 15(10), pages 1-16, May.
    2. Sakthivel Ganesan & Prince Winston David & Praveen Kumar Balachandran & Devakirubakaran Samithas, 2021. "Intelligent Starting Current-Based Fault Identification of an Induction Motor Operating under Various Power Quality Issues," Energies, MDPI, vol. 14(2), pages 1-13, January.
    3. Pierpaolo Dini & Sergio Saponara, 2020. "Design of Adaptive Controller Exploiting Learning Concepts Applied to a BLDC-Based Drive System," Energies, MDPI, vol. 13(10), pages 1-20, May.
    4. Juan Carlos Travieso-Torres & Miriam Vilaragut-Llanes & Ángel Costa-Montiel & Manuel A. Duarte-Mermoud & Norelys Aguila-Camacho & Camilo Contreras-Jara & Alejandro Álvarez-Gracia, 2020. "New Adaptive High Starting Torque Scalar Control Scheme for Induction Motors Based on Passivity," Energies, MDPI, vol. 13(5), pages 1-15, March.
    5. Hannan, M.A. & Ali, Jamal A. & Mohamed, Azah & Hussain, Aini, 2018. "Optimization techniques to enhance the performance of induction motor drives: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 1611-1626.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adolfo Véliz-Tejo & Juan Carlos Travieso-Torres & Andrés A. Peters & Andrés Mora & Felipe Leiva-Silva, 2022. "Normalized-Model Reference System for Parameter Estimation of Induction Motors," Energies, MDPI, vol. 15(13), pages 1-29, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Adolfo Véliz-Tejo & Juan Carlos Travieso-Torres & Andrés A. Peters & Andrés Mora & Felipe Leiva-Silva, 2022. "Normalized-Model Reference System for Parameter Estimation of Induction Motors," Energies, MDPI, vol. 15(13), pages 1-29, June.
    2. Damian Grzechca & Paweł Rybka & Roman Pawełczyk, 2021. "Level Crossing Barrier Machine Faults and Anomaly Detection with the Use of Motor Current Waveform Analysis," Energies, MDPI, vol. 14(11), pages 1-14, May.
    3. Lucian Mihet-Popa & Sergio Saponara, 2021. "Power Converters, Electric Drives and Energy Storage Systems for Electrified Transportation and Smart Grid Applications," Energies, MDPI, vol. 14(14), pages 1-5, July.
    4. Adriano Nardoto & Arthur Amorim & Nelson Santana & Emilio Bueno & Lucas Encarnação & Walbermark Santos, 2022. "Adaptive Model Predictive Control for DAB Converter Switching Losses Reduction," Energies, MDPI, vol. 15(18), pages 1-24, September.
    5. Ángel Adrián Orta-Quintana & Rogelio Ernesto García-Chávez & Ramón Silva-Ortigoza & Magdalena Marciano-Melchor & Miguel Gabriel Villarreal-Cervantes & José Rafael García-Sánchez & Rocío García-Cortés , 2023. "Sensorless Tracking Control Based on Sliding Mode for the “Full-Bridge Buck Inverter–DC Motor” System Fed by PV Panel," Sustainability, MDPI, vol. 15(13), pages 1-27, June.
    6. Chung-Seong Lee & Hae-Joong Kim, 2022. "Harmonic Order Analysis of Cogging Torque for Interior Permanent Magnet Synchronous Motor Considering Manufacturing Disturbances," Energies, MDPI, vol. 15(7), pages 1-13, March.
    7. Mlungisi Ntombela & Kabeya Musasa, 2023. "Load Profile and Load Flow Analysis for a Grid System with Electric Vehicles Using a Hybrid Optimization Algorithm," Sustainability, MDPI, vol. 15(12), pages 1-23, June.
    8. Juan Carlos Travieso-Torres & Manuel A. Duarte-Mermoud, 2022. "Normalized Model Reference Adaptive Control Applied to High Starting Torque Scalar Control Scheme for Induction Motors," Energies, MDPI, vol. 15(10), pages 1-16, May.
    9. Ze Jiang & Xiaoyan Huang & Wenping Cao, 2022. "RLS-Based Algorithm for Detecting Partial Demagnetization under Both Stationary and Nonstationary Conditions," Energies, MDPI, vol. 15(10), pages 1-17, May.
    10. Andriy Chaban & Marek Lis & Andrzej Szafraniec, 2022. "Voltage Stabilisation of a Drive System Including a Power Transformer and Asynchronous and Synchronous Motors of Susceptible Motion Transmission," Energies, MDPI, vol. 15(3), pages 1-22, January.
    11. Xuesong Zhou & Chenglong Wang & Youjie Ma, 2020. "Vector Speed Regulation of an Asynchronous Motor Based on Improved First-Order Linear Active Disturbance Rejection Technology," Energies, MDPI, vol. 13(9), pages 1-20, May.
    12. Maria G. Ioannides & Elias B. Koukoutsis & Anastasios P. Stamelos & Stylianos A. Papazis & Erofili E. Stamataki & Athanasios Papoutsidakis & Vasilios Vikentios & Nikolaos Apostolakis & Michael E. Stam, 2023. "Design and Operation of Internet of Things-Based Monitoring Control System for Induction Machines," Energies, MDPI, vol. 16(7), pages 1-22, March.
    13. Swati Paliwal & Sanjay Kumar Sinha & Yogesh Kumar Chauhan, 2019. "Gravitational search algorithm based optimization technique for enhancing the performance of self excited induction generator," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 1082-1090, October.
    14. Adeel Bashir & Sikandar Khan & Naveed Iqbal & Salem Bashmal & Sami Ullah & Fayyaz & Muhammad Usman, 2023. "A Review of the Various Control Algorithms for Trajectory Control of Unmanned Underwater Vehicles," Sustainability, MDPI, vol. 15(20), pages 1-21, October.
    15. Marcin Kaminski, 2020. "Nature-Inspired Algorithm Implemented for Stable Radial Basis Function Neural Controller of Electric Drive with Induction Motor," Energies, MDPI, vol. 13(24), pages 1-25, December.
    16. Akash Saxena & Ahmad M. Alshamrani & Adel Fahad Alrasheedi & Khalid Abdulaziz Alnowibet & Ali Wagdy Mohamed, 2022. "A Hybrid Approach Based on Principal Component Analysis for Power Quality Event Classification Using Support Vector Machines," Mathematics, MDPI, vol. 10(15), pages 1-16, August.
    17. Sergey Goolak & Borys Liubarskyi & Ievgen Riabov & Vaidas Lukoševičius & Artūras Keršys & Sigitas Kilikevičius, 2023. "Analysis of the Efficiency of Traction Drive Control Systems of Electric Locomotives with Asynchronous Traction Motors," Energies, MDPI, vol. 16(9), pages 1-30, April.
    18. Mateusz Malarczyk & Mateusz Zychlewicz & Radoslaw Stanislawski & Marcin Kaminski, 2023. "Electric Drive with an Adaptive Controller and Wireless Communication System," Future Internet, MDPI, vol. 15(2), pages 1-20, January.
    19. Pierpaolo Dini & Sergio Saponara, 2022. "Review on Model Based Design of Advanced Control Algorithms for Cogging Torque Reduction in Power Drive Systems," Energies, MDPI, vol. 15(23), pages 1-29, November.
    20. Michal Vidlak & Lukas Gorel & Pavol Makys & Michal Stano, 2021. "Sensorless Speed Control of Brushed DC Motor Based at New Current Ripple Component Signal Processing," Energies, MDPI, vol. 14(17), pages 1-25, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3489-:d:812317. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.