Cyclic Assessment of Magnesium Oxide with Additives as a Thermochemical Material to Improve the Mechanical Strength and Chemical Reaction
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Arce, Pablo & Medrano, Marc & Gil, Antoni & Oró, Eduard & Cabeza, Luisa F., 2011. "Overview of thermal energy storage (TES) potential energy savings and climate change mitigation in Spain and Europe," Applied Energy, Elsevier, vol. 88(8), pages 2764-2774, August.
- Shkatulov, Alexandr & Ryu, Junichi & Kato, Yukitaka & Aristov, Yury, 2012. "Composite material “Mg(OH)2/vermiculite”: A promising new candidate for storage of middle temperature heat," Energy, Elsevier, vol. 44(1), pages 1028-1034.
- Kato, Y. & Sasaki, Y. & Yoshizawa, Y., 2005. "Magnesium oxide/water chemical heat pump to enhance energy utilization of a cogeneration system," Energy, Elsevier, vol. 30(11), pages 2144-2155.
- Mastronardo, E. & Bonaccorsi, L. & Kato, Y. & Piperopoulos, E. & Lanza, M. & Milone, C., 2016. "Thermochemical performance of carbon nanotubes based hybrid materials for MgO/H2O/Mg(OH)2 chemical heat pumps," Applied Energy, Elsevier, vol. 181(C), pages 232-243.
- Fernandes, M.S. & Brites, G.J.V.N. & Costa, J.J. & Gaspar, A.R. & Costa, V.A.F., 2016. "Modeling and parametric analysis of an adsorber unit for thermal energy storage," Energy, Elsevier, vol. 102(C), pages 83-94.
- Mastronardo, E. & Bonaccorsi, L. & Kato, Y. & Piperopoulos, E. & Milone, C., 2016. "Efficiency improvement of heat storage materials for MgO/H2O/Mg(OH)2 chemical heat pumps," Applied Energy, Elsevier, vol. 162(C), pages 31-39.
- Pardo, P. & Deydier, A. & Anxionnaz-Minvielle, Z. & Rougé, S. & Cabassud, M. & Cognet, P., 2014. "A review on high temperature thermochemical heat energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 591-610.
- Miró, Laia & Gasia, Jaume & Cabeza, Luisa F., 2016. "Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review," Applied Energy, Elsevier, vol. 179(C), pages 284-301.
- Emanuela Mastronardo & Yukitaka Kato & Lucio Bonaccorsi & Elpida Piperopoulos & Candida Milone, 2017. "Thermochemical Storage of Middle Temperature Wasted Heat by Functionalized C/Mg(OH) 2 Hybrid Materials," Energies, MDPI, vol. 10(1), pages 1-16, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jae Yong Lee & Taesu Yim & Hyouck Ju Kim & Sungkook Hong & Doo Won Seo & Hong Soo Kim, 2019. "Investigation on Long Term Operation of Thermochemical Heat Storage with MgO-Based Composite Honeycombs," Energies, MDPI, vol. 12(7), pages 1-18, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Müller, Danny & Knoll, Christian & Gravogl, Georg & Artner, Werner & Welch, Jan M. & Eitenberger, Elisabeth & Friedbacher, Gernot & Schreiner, Manfred & Harasek, Michael & Hradil, Klaudia & Werner, An, 2019. "Tuning the performance of MgO for thermochemical energy storage by dehydration – From fundamentals to phase impurities," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Piperopoulos, Elpida & Mastronardo, Emanuela & Fazio, Marianna & Lanza, Maurizio & Galvagno, Signorino & Milone, Candida, 2018. "Enhancing the volumetric heat storage capacity of Mg(OH)2 by the addition of a cationic surfactant during its synthesis," Applied Energy, Elsevier, vol. 215(C), pages 512-522.
- Flegkas, S. & Birkelbach, F. & Winter, F. & Freiberger, N. & Werner, A., 2018. "Fluidized bed reactors for solid-gas thermochemical energy storage concepts - Modelling and process limitations," Energy, Elsevier, vol. 143(C), pages 615-623.
- Schmidt, Matthias & Linder, Marc, 2017. "Power generation based on the Ca(OH)2/ CaO thermochemical storage system – Experimental investigation of discharge operation modes in lab scale and corresponding conceptual process design," Applied Energy, Elsevier, vol. 203(C), pages 594-607.
- Emanuela Mastronardo & Yukitaka Kato & Lucio Bonaccorsi & Elpida Piperopoulos & Candida Milone, 2017. "Thermochemical Storage of Middle Temperature Wasted Heat by Functionalized C/Mg(OH) 2 Hybrid Materials," Energies, MDPI, vol. 10(1), pages 1-16, January.
- Shkatulov, Alexandr & Aristov, Yuri, 2015. "Modification of magnesium and calcium hydroxides with salts: An efficient way to advanced materials for storage of middle-temperature heat," Energy, Elsevier, vol. 85(C), pages 667-676.
- Mastronardo, E. & Bonaccorsi, L. & Kato, Y. & Piperopoulos, E. & Lanza, M. & Milone, C., 2016. "Thermochemical performance of carbon nanotubes based hybrid materials for MgO/H2O/Mg(OH)2 chemical heat pumps," Applied Energy, Elsevier, vol. 181(C), pages 232-243.
- Yan, J. & Pan, Z.H. & Zhao, C.Y., 2020. "Experimental study of MgO/Mg(OH)2 thermochemical heat storage with direct heat transfer mode," Applied Energy, Elsevier, vol. 275(C).
- Han, Rui & Gao, Jihui & Wei, Siyu & Su, Yanlin & Sun, Fei & Zhao, Guangbo & Qin, Yukun, 2018. "Strongly coupled calcium carbonate/antioxidative graphite nanosheets composites with high cycling stability for thermochemical energy storage," Applied Energy, Elsevier, vol. 231(C), pages 412-422.
- Ortega-Fernández, Iñigo & Rodríguez-Aseguinolaza, Javier, 2019. "Thermal energy storage for waste heat recovery in the steelworks: The case study of the REslag project," Applied Energy, Elsevier, vol. 237(C), pages 708-719.
- Gravogl, Georg & Knoll, Christian & Artner, Werner & Welch, Jan M. & Eitenberger, Elisabeth & Friedbacher, Gernot & Harasek, Michael & Hradil, Klaudia & Werner, Andreas & Weinberger, Peter & Müller, D, 2019. "Pressure effects on the carbonation of MeO (Me = Co, Mn, Pb, Zn) for thermochemical energy storage," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Stylianos Flegkas & Felix Birkelbach & Franz Winter & Hans Groenewold & Andreas Werner, 2019. "Profitability Analysis and Capital Cost Estimation of a Thermochemical Energy Storage System Utilizing Fluidized Bed Reactors and the Reaction System MgO/Mg(OH) 2," Energies, MDPI, vol. 12(24), pages 1-16, December.
- Chen, Chen & Kong, Mingmin & Zhou, Shuiqing & Sepulveda, Abdon E. & Hong, Hui, 2020. "Energy storage efficiency optimization of methane reforming with CO2 reactors for solar thermochemical energy storage☆," Applied Energy, Elsevier, vol. 266(C).
- Vigneshwaran, K. & Sodhi, Gurpreet Singh & Muthukumar, P. & Guha, Anurag & Senthilmurugan, S., 2019. "Experimental and numerical investigations on high temperature cast steel based sensible heat storage system," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Scapino, Luca & Zondag, Herbert A. & Van Bael, Johan & Diriken, Jan & Rindt, Camilo C.M., 2017. "Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale," Applied Energy, Elsevier, vol. 190(C), pages 920-948.
- Takasu, Hiroki & Ryu, Junichi & Kato, Yukitaka, 2017. "Application of lithium orthosilicate for high-temperature thermochemical energy storage," Applied Energy, Elsevier, vol. 193(C), pages 74-83.
- Takuya Hatakeyama & Norihiko L. Okamoto & Satoshi Otake & Hiroaki Sato & Hongyi Li & Tetsu Ichitsubo, 2022. "Excellently balanced water-intercalation-type heat-storage oxide," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
- Dizaji, Hossein Beidaghy & Hosseini, Hannaneh, 2018. "A review of material screening in pure and mixed-metal oxide thermochemical energy storage (TCES) systems for concentrated solar power (CSP) applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 9-26.
- Aydin, Devrim & Casey, Sean P. & Riffat, Saffa, 2015. "The latest advancements on thermochemical heat storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 356-367.
- Marín, P.E. & Milian, Y. & Ushak, S. & Cabeza, L.F. & Grágeda, M. & Shire, G.S.F., 2021. "Lithium compounds for thermochemical energy storage: A state-of-the-art review and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
More about this item
Keywords
thermal energy storage; thermochemical material; magnesium oxide; bentonite; zeolite 13X; composite materials;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2366-:d:168481. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.