IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v102y2016icp83-94.html
   My bibliography  Save this article

Modeling and parametric analysis of an adsorber unit for thermal energy storage

Author

Listed:
  • Fernandes, M.S.
  • Brites, G.J.V.N.
  • Costa, J.J.
  • Gaspar, A.R.
  • Costa, V.A.F.

Abstract

The dynamic model of an adsorber unit used as thermal energy storage device immersed in water is presented. The system operates with the silica-gel/water pair and is capable of storing the thermal energy received from the surrounding water (e.g., excess heat input from a hot water storage tank), in order to give it back later to the water as adsorption heat. The model was developed following a lumped parameter approach implemented in MATLAB® code. The performance of the absorber unit was assessed by a set of parametric tests under different geometric configurations and temperature conditions. The mass of adsorbent was found to have a higher impact on the thermal energy exchange than the surface contact area between metal and adsorbent. An improved finned adsorber, with 27 internal longitudinal fins and 120 external annular fins, resulted in a heat output to the water 2.3 times higher than with a similar finless adsorber. Moreover, the evaporation temperature effect was found to be much higher than the condensation temperature effect. This device seems to be an attractive solution to include, for instance, in solar hot water systems in order to fulfill the thermal energy needs during periods of low solar radiation.

Suggested Citation

  • Fernandes, M.S. & Brites, G.J.V.N. & Costa, J.J. & Gaspar, A.R. & Costa, V.A.F., 2016. "Modeling and parametric analysis of an adsorber unit for thermal energy storage," Energy, Elsevier, vol. 102(C), pages 83-94.
  • Handle: RePEc:eee:energy:v:102:y:2016:i:c:p:83-94
    DOI: 10.1016/j.energy.2016.02.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216300561
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.02.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. N'Tsoukpoe, K. Edem & Liu, Hui & Le Pierrès, Nolwenn & Luo, Lingai, 2009. "A review on long-term sorption solar energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2385-2396, December.
    2. Li, Tingxian & Wang, Ruzhu & Kiplagat, Jeremiah K. & Kang, YongTae, 2013. "Performance analysis of an integrated energy storage and energy upgrade thermochemical solid–gas sorption system for seasonal storage of solar thermal energy," Energy, Elsevier, vol. 50(C), pages 454-467.
    3. Allouhi, A. & Kousksou, T. & Jamil, A. & El Rhafiki, T. & Mourad, Y. & Zeraouli, Y., 2015. "Optimal working pairs for solar adsorption cooling applications," Energy, Elsevier, vol. 79(C), pages 235-247.
    4. Yong, Li & Sumathy, K., 2002. "Review of mathematical investigation on the closed adsorption heat pump and cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 6(4), pages 305-338, August.
    5. Allouhi, A. & Kousksou, T. & Jamil, A. & Zeraouli, Y., 2014. "Modeling of a thermal adsorber powered by solar energy for refrigeration applications," Energy, Elsevier, vol. 75(C), pages 589-596.
    6. Fernandes, M.S. & Brites, G.J.V.N. & Costa, J.J. & Gaspar, A.R. & Costa, V.A.F., 2014. "Review and future trends of solar adsorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 102-123.
    7. Aydin, Devrim & Casey, Sean P. & Riffat, Saffa, 2015. "The latest advancements on thermochemical heat storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 356-367.
    8. Wang, Dechang & Zhang, Jipeng & Tian, Xiaoliang & Liu, Dawei & Sumathy, K., 2014. "Progress in silica gel–water adsorption refrigeration technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 85-104.
    9. Ullah, K.R. & Saidur, R. & Ping, H.W. & Akikur, R.K. & Shuvo, N.H., 2013. "A review of solar thermal refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 499-513.
    10. Li, Gang & Qian, Suxin & Lee, Hoseong & Hwang, Yunho & Radermacher, Reinhard, 2014. "Experimental investigation of energy and exergy performance of short term adsorption heat storage for residential application," Energy, Elsevier, vol. 65(C), pages 675-691.
    11. Wang, Dechang & Zhang, Jipeng & Yang, Qirong & Li, Na & Sumathy, K., 2014. "Study of adsorption characteristics in silica gel–water adsorption refrigeration," Applied Energy, Elsevier, vol. 113(C), pages 734-741.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dias, João M.S. & Costa, Vítor A.F., 2019. "Which dimensional model for the analysis of a coated tube adsorber for adsorption heat pumps?," Energy, Elsevier, vol. 174(C), pages 1110-1120.
    2. Dias, João M.S. & Costa, Vítor A.F., 2018. "Adsorption heat pumps for heating applications: A review of current state, literature gaps and development challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 317-327.
    3. Taesu Yim & Hong Soo Kim & Jae Yong Lee, 2018. "Cyclic Assessment of Magnesium Oxide with Additives as a Thermochemical Material to Improve the Mechanical Strength and Chemical Reaction," Energies, MDPI, vol. 11(9), pages 1-15, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
    2. Fernandes, M.S. & Brites, G.J.V.N. & Costa, J.J. & Gaspar, A.R. & Costa, V.A.F., 2014. "Review and future trends of solar adsorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 102-123.
    3. Hamza Ayaz & Veerakumar Chinnasamy & Junhyeok Yong & Honghyun Cho, 2021. "Review of Technologies and Recent Advances in Low-Temperature Sorption Thermal Storage Systems," Energies, MDPI, vol. 14(19), pages 1-36, September.
    4. Nagel, Thomas & Beckert, Steffen & Lehmann, Christoph & Gläser, Roger & Kolditz, Olaf, 2016. "Multi-physical continuum models of thermochemical heat storage and transformation in porous media and powder beds—A review," Applied Energy, Elsevier, vol. 178(C), pages 323-345.
    5. Clark, Ruby-Jean & Farid, Mohammed, 2022. "Experimental investigation into cascade thermochemical energy storage system using SrCl2-cement and zeolite-13X materials," Applied Energy, Elsevier, vol. 316(C).
    6. Gordeeva, L.G. & Aristov, Yu.I., 2019. "Adsorptive heat storage and amplification: New cycles and adsorbents," Energy, Elsevier, vol. 167(C), pages 440-453.
    7. Goyal, Parash & Baredar, Prashant & Mittal, Arvind & Siddiqui, Ameenur. R., 2016. "Adsorption refrigeration technology – An overview of theory and its solar energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1389-1410.
    8. Zhu, F.Q. & Jiang, L. & Wang, L.W. & Wang, R.Z., 2016. "Experimental investigation on a MnCl2CaCl2NH3 resorption system for heat and refrigeration cogeneration," Applied Energy, Elsevier, vol. 181(C), pages 29-37.
    9. Choi, Hyung Won & Jeong, Jinhee & Kang, Yong Tae, 2024. "Optimal discharging of solar driven sorption thermal battery for building cooling applications," Energy, Elsevier, vol. 296(C).
    10. Ding, Zhixiong & Wu, Wei & Leung, Michael, 2021. "Advanced/hybrid thermal energy storage technology: material, cycle, system and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    11. Scapino, Luca & Zondag, Herbert A. & Van Bael, Johan & Diriken, Jan & Rindt, Camilo C.M., 2017. "Sorption heat storage for long-term low-temperature applications: A review on the advancements at material and prototype scale," Applied Energy, Elsevier, vol. 190(C), pages 920-948.
    12. Mehari, Abel & Xu, Z.Y. & Wang, R.Z., 2019. "Thermally-pressurized sorption heat storage cycle with low charging temperature," Energy, Elsevier, vol. 189(C).
    13. Li, T.X. & Wu, S. & Yan, T. & Wang, R.Z. & Zhu, J., 2017. "Experimental investigation on a dual-mode thermochemical sorption energy storage system," Energy, Elsevier, vol. 140(P1), pages 383-394.
    14. Narayanan, Shankar & Kim, Hyunho & Umans, Ari & Yang, Sungwoo & Li, Xiansen & Schiffres, Scott N. & Rao, Sameer R. & McKay, Ian S. & Rios Perez, Carlos A. & Hidrovo, Carlos H. & Wang, Evelyn N., 2017. "A thermophysical battery for storage-based climate control," Applied Energy, Elsevier, vol. 189(C), pages 31-43.
    15. Michel, Benoit & Mazet, Nathalie & Neveu, Pierre, 2016. "Experimental investigation of an open thermochemical process operating with a hydrate salt for thermal storage of solar energy: Local reactive bed evolution," Applied Energy, Elsevier, vol. 180(C), pages 234-244.
    16. Bennici, Simona & Dutournié, Patrick & Cathalan, Jérémy & Zbair, Mohamed & Nguyen, Minh Hoang & Scuiller, Elliot & Vaulot, Cyril, 2022. "Heat storage: Hydration investigation of MgSO4/active carbon composites, from material development to domestic applications scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    17. Xu, Zhou & Yin, Yu & Shao, Junpeng & Liu, Yerong & Zhang, Lin & Cui, Qun & Wang, Haiyan, 2020. "Study on heat transfer and cooling performance of copper foams cured MIL-101 adsorption unit tube," Energy, Elsevier, vol. 191(C).
    18. Courbon, Emilie & D'Ans, Pierre & Permyakova, Anastasia & Skrylnyk, Oleksandr & Steunou, Nathalie & Degrez, Marc & Frère, Marc, 2017. "A new composite sorbent based on SrBr2 and silica gel for solar energy storage application with high energy storage density and stability," Applied Energy, Elsevier, vol. 190(C), pages 1184-1194.
    19. Lehmann, Christoph & Beckert, Steffen & Gläser, Roger & Kolditz, Olaf & Nagel, Thomas, 2017. "Assessment of adsorbate density models for numerical simulations of zeolite-based heat storage applications," Applied Energy, Elsevier, vol. 185(P2), pages 1965-1970.
    20. Zhang, Y.N. & Wang, R.Z. & Li, T.X., 2017. "Experimental investigation on an open sorption thermal storage system for space heating," Energy, Elsevier, vol. 141(C), pages 2421-2433.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:102:y:2016:i:c:p:83-94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.