IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v162y2016icp31-39.html
   My bibliography  Save this article

Efficiency improvement of heat storage materials for MgO/H2O/Mg(OH)2 chemical heat pumps

Author

Listed:
  • Mastronardo, E.
  • Bonaccorsi, L.
  • Kato, Y.
  • Piperopoulos, E.
  • Milone, C.

Abstract

MgO/H2O/Mg(OH)2 chemical heat storage of waste energy from industrial processes is a promising technology in view of a more efficient use and saving of primary energy sources. A new approach was used to develop a hybrid heat storage material made of magnesium hydroxide (Mg(OH)2) and exfoliated graphite (which is used to improve the heat transfer with its high thermal conductivity). Mg(OH)2 nanoplatelets were directly grown on graphite surface via a deposition–precipitation method to increase the compatibility between the two materials. The material thus obtained, named DP-MG, was experimentally tested to determine its heat storage and output capacities. An improvement of the material efficiency was obtained with a higher storage capacity at lower reaction temperature and a higher heat output rate.

Suggested Citation

  • Mastronardo, E. & Bonaccorsi, L. & Kato, Y. & Piperopoulos, E. & Milone, C., 2016. "Efficiency improvement of heat storage materials for MgO/H2O/Mg(OH)2 chemical heat pumps," Applied Energy, Elsevier, vol. 162(C), pages 31-39.
  • Handle: RePEc:eee:appene:v:162:y:2016:i:c:p:31-39
    DOI: 10.1016/j.apenergy.2015.10.066
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915012933
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.10.066?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernandes, D. & Pitié, F. & Cáceres, G. & Baeyens, J., 2012. "Thermal energy storage: “How previous findings determine current research priorities”," Energy, Elsevier, vol. 39(1), pages 246-257.
    2. Wang, Tongcai & Luan, Weiling & Wang, Wei & Tu, Shan-Tung, 2014. "Waste heat recovery through plate heat exchanger based thermoelectric generator system," Applied Energy, Elsevier, vol. 136(C), pages 860-865.
    3. Aydin, Devrim & Casey, Sean P. & Riffat, Saffa, 2015. "The latest advancements on thermochemical heat storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 356-367.
    4. Guo, Jiangfeng & Huai, Xiulan, 2012. "The application of entransy theory in optimization design of Isopropanol–Acetone–Hydrogen chemical heat pump," Energy, Elsevier, vol. 43(1), pages 355-360.
    5. Ogura, Hironao & Yamamoto, Tetsuya & Kage, Hiroyuki, 2003. "Efficiencies of CaO/H2O/Ca(OH)2 chemical heat pump for heat storing and heating/cooling," Energy, Elsevier, vol. 28(14), pages 1479-1493.
    6. Guo, Jiangfeng & Huai, Xiulan & Li, Xunfeng & Xu, Mingtian, 2012. "Performance analysis of Isopropanol–Acetone–Hydrogen chemical heat pump," Applied Energy, Elsevier, vol. 93(C), pages 261-267.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ye, H. & Tao, Y.B. & Wu, Z.H., 2022. "Performance improvement of packed bed thermochemical heat storage by enhancing heat transfer and vapor transmission," Applied Energy, Elsevier, vol. 326(C).
    2. Nagel, Thomas & Beckert, Steffen & Lehmann, Christoph & Gläser, Roger & Kolditz, Olaf, 2016. "Multi-physical continuum models of thermochemical heat storage and transformation in porous media and powder beds—A review," Applied Energy, Elsevier, vol. 178(C), pages 323-345.
    3. Lutz, Michael & Bhouri, Maha & Linder, Marc & Bürger, Inga, 2019. "Adiabatic magnesium hydride system for hydrogen storage based on thermochemical heat storage: Numerical analysis of the dehydrogenation," Applied Energy, Elsevier, vol. 236(C), pages 1034-1048.
    4. Stylianos Flegkas & Felix Birkelbach & Franz Winter & Hans Groenewold & Andreas Werner, 2019. "Profitability Analysis and Capital Cost Estimation of a Thermochemical Energy Storage System Utilizing Fluidized Bed Reactors and the Reaction System MgO/Mg(OH) 2," Energies, MDPI, vol. 12(24), pages 1-16, December.
    5. Han, Rui & Gao, Jihui & Wei, Siyu & Su, Yanlin & Sun, Fei & Zhao, Guangbo & Qin, Yukun, 2018. "Strongly coupled calcium carbonate/antioxidative graphite nanosheets composites with high cycling stability for thermochemical energy storage," Applied Energy, Elsevier, vol. 231(C), pages 412-422.
    6. Flegkas, S. & Birkelbach, F. & Winter, F. & Freiberger, N. & Werner, A., 2018. "Fluidized bed reactors for solid-gas thermochemical energy storage concepts - Modelling and process limitations," Energy, Elsevier, vol. 143(C), pages 615-623.
    7. Takasu, Hiroki & Hoshino, Hitoshi & Tamura, Yoshiro & Kato, Yukitaka, 2019. "Performance evaluation of thermochemical energy storage system based on lithium orthosilicate and zeolite," Applied Energy, Elsevier, vol. 240(C), pages 1-5.
    8. Taesu Yim & Hong Soo Kim & Jae Yong Lee, 2018. "Cyclic Assessment of Magnesium Oxide with Additives as a Thermochemical Material to Improve the Mechanical Strength and Chemical Reaction," Energies, MDPI, vol. 11(9), pages 1-15, September.
    9. Emanuela Mastronardo & Yukitaka Kato & Lucio Bonaccorsi & Elpida Piperopoulos & Candida Milone, 2017. "Thermochemical Storage of Middle Temperature Wasted Heat by Functionalized C/Mg(OH) 2 Hybrid Materials," Energies, MDPI, vol. 10(1), pages 1-16, January.
    10. Alva, Guruprasad & Lin, Yaxue & Fang, Guiyin, 2018. "An overview of thermal energy storage systems," Energy, Elsevier, vol. 144(C), pages 341-378.
    11. Piperopoulos, Elpida & Mastronardo, Emanuela & Fazio, Marianna & Lanza, Maurizio & Galvagno, Signorino & Milone, Candida, 2018. "Enhancing the volumetric heat storage capacity of Mg(OH)2 by the addition of a cationic surfactant during its synthesis," Applied Energy, Elsevier, vol. 215(C), pages 512-522.
    12. Mastronardo, E. & Bonaccorsi, L. & Kato, Y. & Piperopoulos, E. & Lanza, M. & Milone, C., 2016. "Thermochemical performance of carbon nanotubes based hybrid materials for MgO/H2O/Mg(OH)2 chemical heat pumps," Applied Energy, Elsevier, vol. 181(C), pages 232-243.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pelay, Ugo & Luo, Lingai & Fan, Yilin & Stitou, Driss & Rood, Mark, 2017. "Thermal energy storage systems for concentrated solar power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 82-100.
    2. Xu, Min & Cai, Jun & Guo, Jiangfeng & Huai, Xiulan & Liu, Zhigang & Zhang, Hang, 2017. "Technical and economic feasibility of the Isopropanol-Acetone-Hydrogen chemical heat pump based on a lab-scale prototype," Energy, Elsevier, vol. 139(C), pages 1030-1039.
    3. Pelay, Ugo & Luo, Lingai & Fan, Yilin & Stitou, Driss & Castelain, Cathy, 2019. "Integration of a thermochemical energy storage system in a Rankine cycle driven by concentrating solar power: Energy and exergy analyses," Energy, Elsevier, vol. 167(C), pages 498-510.
    4. Liu, Ming & Steven Tay, N.H. & Bell, Stuart & Belusko, Martin & Jacob, Rhys & Will, Geoffrey & Saman, Wasim & Bruno, Frank, 2016. "Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1411-1432.
    5. Dizaji, Hossein Beidaghy & Hosseini, Hannaneh, 2018. "A review of material screening in pure and mixed-metal oxide thermochemical energy storage (TCES) systems for concentrated solar power (CSP) applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 9-26.
    6. Nagel, Thomas & Beckert, Steffen & Lehmann, Christoph & Gläser, Roger & Kolditz, Olaf, 2016. "Multi-physical continuum models of thermochemical heat storage and transformation in porous media and powder beds—A review," Applied Energy, Elsevier, vol. 178(C), pages 323-345.
    7. Jayasekara, Saliya & Halgamuge, Saman K., 2013. "Mathematical modeling and experimental verification of an absorption chiller including three dimensional temperature and concentration distributions," Applied Energy, Elsevier, vol. 106(C), pages 232-242.
    8. Beata Pytlik & Daniel Smykowski & Piotr Szulc, 2022. "The Impact of Baffle Geometry in the PCM Heat Storage Unit on the Charging Process with High and Low Water Streams," Energies, MDPI, vol. 15(24), pages 1-17, December.
    9. Courbon, Emilie & D'Ans, Pierre & Permyakova, Anastasia & Skrylnyk, Oleksandr & Steunou, Nathalie & Degrez, Marc & Frère, Marc, 2017. "A new composite sorbent based on SrBr2 and silica gel for solar energy storage application with high energy storage density and stability," Applied Energy, Elsevier, vol. 190(C), pages 1184-1194.
    10. Lai, Chun Sing & Locatelli, Giorgio, 2021. "Economic and financial appraisal of novel large-scale energy storage technologies," Energy, Elsevier, vol. 214(C).
    11. Liu, Jiatao & Lu, Shilei, 2024. "Thermal performance of packed-bed latent heat storage tank integrated with flat-plate collectors under intermittent loads of building heating," Energy, Elsevier, vol. 299(C).
    12. Mario Cascetta & Fabio Serra & Simone Arena & Efisio Casti & Giorgio Cau & Pierpaolo Puddu, 2016. "Experimental and Numerical Research Activity on a Packed Bed TES System," Energies, MDPI, vol. 9(9), pages 1-13, September.
    13. Pitié, F. & Zhao, C.Y. & Baeyens, J. & Degrève, J. & Zhang, H.L., 2013. "Circulating fluidized bed heat recovery/storage and its potential to use coated phase-change-material (PCM) particles," Applied Energy, Elsevier, vol. 109(C), pages 505-513.
    14. Xu, Y.X. & Yan, J. & Zhao, C.Y., 2022. "Investigation on application temperature zone and exergy loss regulation based on MgCO3/MgO thermochemical heat storage and release process," Energy, Elsevier, vol. 239(PC).
    15. Zhang, Shaoliang & Liu, Shuli & Xu, Zhiqi & Chen, Hongkuan & Wang, Jihong & Li, Yongliang & Yar Khan, Sheher & Kumar, Mahesh, 2024. "Effect of the irradiation intensity on the photo-thermal conversion performance of composite phase change materials: An experimental approach," Renewable Energy, Elsevier, vol. 225(C).
    16. Zhang, Y.N. & Wang, R.Z. & Li, T.X., 2017. "Experimental investigation on an open sorption thermal storage system for space heating," Energy, Elsevier, vol. 141(C), pages 2421-2433.
    17. Wang, Jingyi & Wang, Zhe & Zhou, Ding & Sun, Kaiyu, 2019. "Key issues and novel optimization approaches of industrial waste heat recovery in district heating systems," Energy, Elsevier, vol. 188(C).
    18. Gordeeva, L.G. & Aristov, Yu.I., 2019. "Adsorptive heat storage and amplification: New cycles and adsorbents," Energy, Elsevier, vol. 167(C), pages 440-453.
    19. Finck, Christian & Li, Rongling & Kramer, Rick & Zeiler, Wim, 2018. "Quantifying demand flexibility of power-to-heat and thermal energy storage in the control of building heating systems," Applied Energy, Elsevier, vol. 209(C), pages 409-425.
    20. Liu, Di & Zhao, Fu-Yun & Yang, Hongxing & Tang, Guang-Fa, 2015. "Theoretical and experimental investigations of thermoelectric heating system with multiple ventilation channels," Applied Energy, Elsevier, vol. 159(C), pages 458-468.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:162:y:2016:i:c:p:31-39. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.