IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i7p1623-d153709.html
   My bibliography  Save this article

Gain Scheduled Torque Compensation of PMSG-Based Wind Turbine for Frequency Regulation in an Isolated Grid

Author

Listed:
  • Haixin Wang

    (School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China)

  • Junyou Yang

    (School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China)

  • Zhe Chen

    (Department of Energy Technology, Aalborg University, 9100 Aalborg, Denmark)

  • Weichun Ge

    (Liaoning Province Electric Power Company, Shenyang 110006, China)

  • Shiyan Hu

    (Department of Electrical and Computer Engineering, Michigan Technological University, Houghton, MI 49931, USA)

  • Yiming Ma

    (School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China)

  • Yunlu Li

    (School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China)

  • Guanfeng Zhang

    (School of Electrical Engineering, Shenyang University of Technology, Shenyang 110870, China)

  • Lijian Yang

    (School of Information Science and Engineering, Shenyang University of Technology, Shenyang 110870, China)

Abstract

Frequency stability in an isolated grid can be easily impacted by sudden load or wind speed changes. Many frequency regulation techniques are utilized to solve this problem. However, there are only few studies designing torque compensation controllers based on power performances in different Speed Parts. It is a major challenge for a wind turbine generator (WTG) to achieve the satisfactory compensation performance in different Speed Parts. To tackle this challenge, this paper proposes a gain scheduled torque compensation strategy for permanent magnet synchronous generator (PMSG) based wind turbines. Our main idea is to improve the anti-disturbance ability for frequency regulation by compensating torque based on WTG speed Parts. To achieve higher power reserve in each Speed Part, an enhanced deloading method of WTG is proposed. We develop a new small-signal dynamic model through analyzing the steady-state performances of deloaded WTG in the whole range of wind speed. Subsequently, H ∞ theory is leveraged in designing the gain scheduled torque compensation controller to effectively suppress frequency fluctuation. Moreover, since torque compensation brings about untimely power adjustment in over-rated wind speed condition, the conventional speed reference of pitch control system is improved. Our simulation and experimental results demonstrate that the proposed strategy can significantly improve frequency stability and smoothen power fluctuation resulting from wind speed variations. The minimum of frequency deviation with the proposed strategy is improved by up to 0.16 Hz at over-rated wind speed. Our technique can also improve anti-disturbance ability in frequency domain and achieve power balance.

Suggested Citation

  • Haixin Wang & Junyou Yang & Zhe Chen & Weichun Ge & Shiyan Hu & Yiming Ma & Yunlu Li & Guanfeng Zhang & Lijian Yang, 2018. "Gain Scheduled Torque Compensation of PMSG-Based Wind Turbine for Frequency Regulation in an Isolated Grid," Energies, MDPI, vol. 11(7), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1623-:d:153709
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/7/1623/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/7/1623/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrés Peña Asensio & Santiago Arnaltes Gómez & Jose Luis Rodriguez-Amenedo & Manuel García Plaza & Joaquín Eloy-García Carrasco & Jaime Manuel Alonso-Martínez de las Morenas, 2018. "A Voltage and Frequency Control Strategy for Stand-Alone Full Converter Wind Energy Conversion Systems," Energies, MDPI, vol. 11(3), pages 1-19, February.
    2. Pradhan, Chittaranjan & Bhende, Chandrashekhar Narayan & Samanta, Anik Kumar, 2018. "Adaptive virtual inertia-based frequency regulation in wind power systems," Renewable Energy, Elsevier, vol. 115(C), pages 558-574.
    3. Attya, A.B. & Dominguez-Garcia, J.L. & Anaya-Lara, O., 2018. "A review on frequency support provision by wind power plants: Current and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2071-2087.
    4. Yi Tang & Jianfeng Dai & Jia Ning & Jie Dang & Yan Li & Xinshou Tian, 2017. "An Extended System Frequency Response Model Considering Wind Power Participation in Frequency Regulation," Energies, MDPI, vol. 10(11), pages 1-18, November.
    5. Maha Zoghlami & Ameni Kadri & Faouzi Bacha, 2018. "Analysis and Application of the Sliding Mode Control Approach in the Variable-Wind Speed Conversion System for the Utility of Grid Connection," Energies, MDPI, vol. 11(4), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ana Fernández-Guillamón & Antonio Vigueras-Rodríguez & Emilio Gómez-Lázaro & Ángel Molina-García, 2018. "Fast Power Reserve Emulation Strategy for VSWT Supporting Frequency Control in Multi-Area Power Systems," Energies, MDPI, vol. 11(10), pages 1-20, October.
    2. Shijia Zhou & Fei Rong & Zhangtao Yin & Shoudao Huang & Yuebin Zhou, 2018. "HVDC Transmission Technology of Wind Power System with Multi-Phase PMSG," Energies, MDPI, vol. 11(12), pages 1-16, November.
    3. Yuan Li & Zengjin Xu & Zuoxia Xing & Bowen Zhou & Haoqian Cui & Bowen Liu & Bo Hu, 2020. "A Modified Reynolds-Averaged Navier–Stokes-Based Wind Turbine Wake Model Considering Correction Modules," Energies, MDPI, vol. 13(17), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pablo Fernández-Bustamante & Oscar Barambones & Isidro Calvo & Cristian Napole & Mohamed Derbeli, 2021. "Provision of Frequency Response from Wind Farms: A Review," Energies, MDPI, vol. 14(20), pages 1-24, October.
    2. Ayman B. Attya & Adam Vickers, 2021. "Operation and Control of a Hybrid Power Plant with the Capability of Grid Services Provision," Energies, MDPI, vol. 14(13), pages 1-15, June.
    3. Xiangwu Yan & Xuewei Sun, 2020. "Inertia and Droop Frequency Control Strategy of Doubly-Fed Induction Generator Based on Rotor Kinetic Energy and Supercapacitor," Energies, MDPI, vol. 13(14), pages 1-19, July.
    4. Nikola Lopac & Neven Bulic & Niksa Vrkic, 2019. "Sliding Mode Observer-Based Load Angle Estimation for Salient-Pole Wound Rotor Synchronous Generators," Energies, MDPI, vol. 12(9), pages 1-22, April.
    5. Wang, Huaizhi & Liu, Yangyang & Zhou, Bin & Voropai, Nikolai & Cao, Guangzhong & Jia, Youwei & Barakhtenko, Evgeny, 2020. "Advanced adaptive frequency support scheme for DFIG under cyber uncertainty," Renewable Energy, Elsevier, vol. 161(C), pages 98-109.
    6. Matthew Cole & David Campos-Gaona & Adam Stock & Marcel Nedd, 2023. "A Critical Review of Current and Future Options for Wind Farm Participation in Ancillary Service Provision," Energies, MDPI, vol. 16(3), pages 1-18, January.
    7. Tingting Cai & Sutong Liu & Gangui Yan & Hongbo Liu, 2019. "Analysis of Doubly Fed Induction Generators Participating in Continuous Frequency Regulation with Different Wind Speeds Considering Regulation Power Constraints," Energies, MDPI, vol. 12(4), pages 1-20, February.
    8. Ramesh Kumar Behara & Akshay Kumar Saha, 2022. "Artificial Intelligence Control System Applied in Smart Grid Integrated Doubly Fed Induction Generator-Based Wind Turbine: A Review," Energies, MDPI, vol. 15(17), pages 1-56, September.
    9. Carlos A. Platero & José A. Sánchez & Christophe Nicolet & Philippe Allenbach, 2019. "Hydropower Plants Frequency Regulation Depending on Upper Reservoir Water Level," Energies, MDPI, vol. 12(9), pages 1-15, April.
    10. Hua Li & Xudong Li & Weichen Xiong & Yichen Yan & Yuanhang Zhang & Peng Kou, 2023. "Cooperative Voltage and Frequency Regulation with Wind Farm: A Model-Based Offline Optimal Control Approach," Energies, MDPI, vol. 16(17), pages 1-19, August.
    11. Sebastian, Oliva H. & Carlos, Bahamonde D., 2024. "Trade-off between frequency stability and renewable generation – Studying virtual inertia from solar PV and operating stability constraints," Renewable Energy, Elsevier, vol. 232(C).
    12. Iker Elorza & Carlos Calleja & Aron Pujana-Arrese, 2019. "On Wind Turbine Power Delta Control," Energies, MDPI, vol. 12(12), pages 1-25, June.
    13. Zhicheng Lin & Song Zheng & Zhicheng Chen & Rong Zheng & Wang Zhang, 2019. "Application Research of the Parallel System Theory and the Data Engine Approach in Wind Energy Conversion System," Energies, MDPI, vol. 12(5), pages 1-20, March.
    14. Kheshti, Mostafa & Ding, Lei & Nayeripour, Majid & Wang, Xiaowei & Terzija, Vladimir, 2019. "Active power support of wind turbines for grid frequency events using a reliable power reference scheme," Renewable Energy, Elsevier, vol. 139(C), pages 1241-1254.
    15. Attya, A.B. & Anaya-Lara, O. & Leithead, W.E., 2018. "Novel concept of renewables association with synchronous generation for enhancing the provision of ancillary services," Applied Energy, Elsevier, vol. 229(C), pages 1035-1047.
    16. Vasudevan, Krishnakumar R. & Ramachandaramurthy, Vigna K. & Venugopal, Gomathi & Guerrero, Josep M. & David Agundis Tinajero, Gibran, 2022. "Synergizing pico hydel and battery energy storage with adaptive synchronverter control for frequency regulation of autonomous microgrids," Applied Energy, Elsevier, vol. 325(C).
    17. Alexander Rohr & Clemens Jauch, 2021. "Software-in-the-Loop Simulation of a Gas-Engine for the Design and Testing of a Wind Turbine Emulator," Energies, MDPI, vol. 14(10), pages 1-20, May.
    18. Danny Ochoa & Sergio Martinez, 2021. "Analytical Approach to Understanding the Effects of Implementing Fast-Frequency Response by Wind Turbines on the Short-Term Operation of Power Systems," Energies, MDPI, vol. 14(12), pages 1-22, June.
    19. Michał Gwóźdź & Michał Krystkowiak & Łukasz Ciepliński & Ryszard Strzelecki, 2020. "A Wind Energy Conversion System Based on a Generator with Modulated Magnetic Flux," Energies, MDPI, vol. 13(12), pages 1-18, June.
    20. Li, Le & Zhu, Donghai & Zou, Xudong & Hu, Jiabing & Kang, Yong & Guerrero, Josep M., 2023. "Review of frequency regulation requirements for wind power plants in international grid codes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1623-:d:153709. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.