IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v81y2018ip2p2071-2087.html
   My bibliography  Save this article

A review on frequency support provision by wind power plants: Current and future challenges

Author

Listed:
  • Attya, A.B.
  • Dominguez-Garcia, J.L.
  • Anaya-Lara, O.

Abstract

The continuing increase of wind energy penetration into power systems, in combination with the retirement of conventional generation, raises new challenges for the maintenance of power system stability. This paper presents a comprehensive review of wind power plant capabilities to provide frequency support and the corresponding methods available in the published literature are thoroughly analysed and compared. The topic is covered from different perspectives giving a comprehensive overview on the work carried out in this field. In addition, the integration of energy storage technologies and dispatching of wind farms during frequency deviations are thoroughly discussed. Finally, technical challenges, future research lines and general recommendations are provided.

Suggested Citation

  • Attya, A.B. & Dominguez-Garcia, J.L. & Anaya-Lara, O., 2018. "A review on frequency support provision by wind power plants: Current and future challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2071-2087.
  • Handle: RePEc:eee:rensus:v:81:y:2018:i:p2:p:2071-2087
    DOI: 10.1016/j.rser.2017.06.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032117309553
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.06.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    2. Díaz-González, Francisco & Hau, Melanie & Sumper, Andreas & Gomis-Bellmunt, Oriol, 2014. "Participation of wind power plants in system frequency control: Review of grid code requirements and control methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 551-564.
    3. Hansen, Anca D. & Altin, Müfit & Iov, Florin, 2016. "Provision of enhanced ancillary services from wind power plants – Examples and challenges," Renewable Energy, Elsevier, vol. 97(C), pages 8-18.
    4. Hafiz, Faizal & Abdennour, Adel, 2015. "Optimal use of kinetic energy for the inertial support from variable speed wind turbines," Renewable Energy, Elsevier, vol. 80(C), pages 629-643.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Pepiciello & José Luis Domínguez-García & Alfredo Vaccaro, 2022. "The Impact of Frequency Support by Wind Turbines on the Small-Signal Stability of Power Systems," Energies, MDPI, vol. 15(22), pages 1-20, November.
    2. Ayman B. Attya & Adam Vickers, 2021. "Operation and Control of a Hybrid Power Plant with the Capability of Grid Services Provision," Energies, MDPI, vol. 14(13), pages 1-15, June.
    3. Aftab Ahmed Ansari & Giribabu Dyanamina, 2022. "Fault Ride-Through Operation Analysis of Doubly Fed Induction Generator-Based Wind Energy Conversion Systems: A Comparative Review," Energies, MDPI, vol. 15(21), pages 1-33, October.
    4. Li, Le & Zhu, Donghai & Zou, Xudong & Hu, Jiabing & Kang, Yong & Guerrero, Josep M., 2023. "Review of frequency regulation requirements for wind power plants in international grid codes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    5. Alexander Rohr & Clemens Jauch, 2021. "Software-in-the-Loop Simulation of a Gas-Engine for the Design and Testing of a Wind Turbine Emulator," Energies, MDPI, vol. 14(10), pages 1-20, May.
    6. Abiodun, Kehinde & Hood, Karoline & Cox, John L. & Newman, Alexandra M. & Zolan, Alex J., 2023. "The value of concentrating solar power in ancillary services markets," Applied Energy, Elsevier, vol. 334(C).
    7. Banshwar, Anuj & Sharma, Naveen Kumar & Sood, Yog Raj & Shrivastava, Rajnish, 2019. "Market-based participation of energy storage scheme to support renewable energy sources for the procurement of energy and spinning reserve," Renewable Energy, Elsevier, vol. 135(C), pages 326-344.
    8. Anukriti Pokhriyal & José Luis Domínguez-García & Pedro Gómez-Romero, 2022. "Impact of Battery Energy System Integration in Frequency Control of an Electrical Grid with Wind Power," Clean Technol., MDPI, vol. 4(4), pages 1-15, October.
    9. Konstantinos Oureilidis & Kyriaki-Nefeli Malamaki & Konstantinos Gallos & Achilleas Tsitsimelis & Christos Dikaiakos & Spyros Gkavanoudis & Milos Cvetkovic & Juan Manuel Mauricio & Jose Maria Maza Ort, 2020. "Ancillary Services Market Design in Distribution Networks: Review and Identification of Barriers," Energies, MDPI, vol. 13(4), pages 1-44, February.
    10. Baolong Nguyen Phung & Yuan-Kang Wu & Manh-Hai Pham, 2024. "Novel Fuzzy Logic Controls to Enhance Dynamic Frequency Control and Pitch Angle Regulation in Variable-Speed Wind Turbines," Energies, MDPI, vol. 17(11), pages 1-26, May.
    11. Baolong Nguyen Phung & Yuan-Kang Wu & Manh-Hai Pham, 2024. "Coordinated Frequency Regulation between DFIG-VSWTs and BESS Hybrid Systems," Energies, MDPI, vol. 17(13), pages 1-27, June.
    12. Kenneth E. Okedu & Akhtar Kalam, 2023. "Comparative Study of Grid Frequency Stability Using Flywheel-Based Variable-Speed Drive and Energy Capacitor System," Energies, MDPI, vol. 16(8), pages 1-16, April.
    13. Haixin Wang & Junyou Yang & Zhe Chen & Weichun Ge & Shiyan Hu & Yiming Ma & Yunlu Li & Guanfeng Zhang & Lijian Yang, 2018. "Gain Scheduled Torque Compensation of PMSG-Based Wind Turbine for Frequency Regulation in an Isolated Grid," Energies, MDPI, vol. 11(7), pages 1-19, June.
    14. Xu Wang & Yanxia Shen, 2019. "Fault Tolerant Control of DFIG-Based Wind Energy Conversion System Using Augmented Observer," Energies, MDPI, vol. 12(4), pages 1-12, February.
    15. José Calixto Lopes & Thales Sousa, 2022. "Transmission System Electromechanical Stability Analysis with High Penetration of Renewable Generation and Battery Energy Storage System Application," Energies, MDPI, vol. 15(6), pages 1-23, March.
    16. Pablo Fernández-Bustamante & Oscar Barambones & Isidro Calvo & Cristian Napole & Mohamed Derbeli, 2021. "Provision of Frequency Response from Wind Farms: A Review," Energies, MDPI, vol. 14(20), pages 1-24, October.
    17. Matthew Cole & David Campos-Gaona & Adam Stock & Marcel Nedd, 2023. "A Critical Review of Current and Future Options for Wind Farm Participation in Ancillary Service Provision," Energies, MDPI, vol. 16(3), pages 1-18, January.
    18. Iker Elorza & Carlos Calleja & Aron Pujana-Arrese, 2019. "On Wind Turbine Power Delta Control," Energies, MDPI, vol. 12(12), pages 1-25, June.
    19. Attya, A.B. & Anaya-Lara, O. & Leithead, W.E., 2018. "Novel concept of renewables association with synchronous generation for enhancing the provision of ancillary services," Applied Energy, Elsevier, vol. 229(C), pages 1035-1047.
    20. Yuhong Wang & Jie Zhu & Qi Zeng & Zongsheng Zheng & Guangyuan Yu & Aihui Yin, 2021. "Frequency Coordinated Control Strategy for an HVDC Sending-End System with Wind Power Integration Based on Fuzzy Logic Control," Energies, MDPI, vol. 14(19), pages 1-25, September.
    21. Khan, Asif & Seyedmahmoudian, Mehdi & Raza, Ali & Stojcevski, Alex, 2021. "Analytical review on common and state-of-the-art FR strategies for VSC-MTDC integrated offshore wind power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    22. Bo Xu & Linwei Zhang & Yin Yao & Xiangdong Yu & Yixin Yang & Dongdong Li, 2021. "Virtual Inertia Coordinated Allocation Method Considering Inertia Demand and Wind Turbine Inertia Response Capability," Energies, MDPI, vol. 14(16), pages 1-15, August.
    23. Rabanal, Arkaitz & Smith, Andrew Macmillan & Ahaotu, Chiagoro Chinonyerem & Tedeschi, Elisabetta, 2024. "Energy storage systems for services provision in offshore wind farms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    24. Ramesh Kumar Behara & Akshay Kumar Saha, 2022. "Artificial Intelligence Control System Applied in Smart Grid Integrated Doubly Fed Induction Generator-Based Wind Turbine: A Review," Energies, MDPI, vol. 15(17), pages 1-56, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ana Fernández-Guillamón & Guillermo Martínez-Lucas & Ángel Molina-García & Jose-Ignacio Sarasua, 2020. "Hybrid Wind–PV Frequency Control Strategy under Variable Weather Conditions in Isolated Power Systems," Sustainability, MDPI, vol. 12(18), pages 1-25, September.
    2. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. Ana Fernández-Guillamón & Guillermo Martínez-Lucas & Ángel Molina-García & Jose Ignacio Sarasua, 2020. "An Adaptive Control Scheme for Variable Speed Wind Turbines Providing Frequency Regulation in Isolated Power Systems with Thermal Generation," Energies, MDPI, vol. 13(13), pages 1-19, July.
    4. Kheshti, Mostafa & Ding, Lei & Nayeripour, Majid & Wang, Xiaowei & Terzija, Vladimir, 2019. "Active power support of wind turbines for grid frequency events using a reliable power reference scheme," Renewable Energy, Elsevier, vol. 139(C), pages 1241-1254.
    5. Pradhan, Chittaranjan & Bhende, Chandrashekhar Narayan & Samanta, Anik Kumar, 2018. "Adaptive virtual inertia-based frequency regulation in wind power systems," Renewable Energy, Elsevier, vol. 115(C), pages 558-574.
    6. Resch, Matthias & Bühler, Jochen & Klausen, Mira & Sumper, Andreas, 2017. "Impact of operation strategies of large scale battery systems on distribution grid planning in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1042-1063.
    7. Khan, Asif & Seyedmahmoudian, Mehdi & Raza, Ali & Stojcevski, Alex, 2021. "Analytical review on common and state-of-the-art FR strategies for VSC-MTDC integrated offshore wind power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    8. Müfit Altin & Jan Christian Kuhlmann & Kaushik Das & Anca Daniela Hansen, 2018. "Optimization of Synthetic Inertial Response from Wind Power Plants," Energies, MDPI, vol. 11(5), pages 1-15, April.
    9. Kamal Shahid & Müfit Altin & Lars Møller Mikkelsen & Rasmus Løvenstein Olsen & Florin Iov, 2018. "ICT Based Performance Evaluation of Primary Frequency Control Support from Renewable Power Plants in Smart Grids," Energies, MDPI, vol. 11(6), pages 1-26, May.
    10. Guandalini, Giulio & Campanari, Stefano & Romano, Matteo C., 2015. "Power-to-gas plants and gas turbines for improved wind energy dispatchability: Energy and economic assessment," Applied Energy, Elsevier, vol. 147(C), pages 117-130.
    11. Kim, Sunwoo & Choi, Yechan & Park, Joungho & Adams, Derrick & Heo, Seongmin & Lee, Jay H., 2024. "Multi-period, multi-timescale stochastic optimization model for simultaneous capacity investment and energy management decisions for hybrid Micro-Grids with green hydrogen production under uncertainty," Renewable and Sustainable Energy Reviews, Elsevier, vol. 190(PA).
    12. Enevoldsen, Peter & Sovacool, Benjamin K., 2016. "Integrating power systems for remote island energy supply: Lessons from Mykines, Faroe Islands," Renewable Energy, Elsevier, vol. 85(C), pages 642-648.
    13. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.
    14. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2017. "Techno-economics and environmental analysis of energy storage for a student residence under a South African time-of-use tariff rate," Energy, Elsevier, vol. 135(C), pages 413-429.
    15. Hugo Algarvio & Fernando Lopes & António Couto & Ana Estanqueiro, 2019. "Participation of wind power producers in day‐ahead and balancing markets: An overview and a simulation‐based study," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(5), September.
    16. Rao, A. Gangoli & van den Oudenalder, F.S.C. & Klein, S.A., 2019. "Natural gas displacement by wind curtailment utilization in combined-cycle power plants," Energy, Elsevier, vol. 168(C), pages 477-491.
    17. Cheng, Yi & Azizipanah-Abarghooee, Rasoul & Azizi, Sadegh & Ding, Lei & Terzija, Vladimir, 2020. "Smart frequency control in low inertia energy systems based on frequency response techniques: A review," Applied Energy, Elsevier, vol. 279(C).
    18. Li, Pengfei & Hu, Weihao & Hu, Rui & Huang, Qi & Yao, Jun & Chen, Zhe, 2019. "Strategy for wind power plant contribution to frequency control under variable wind speed," Renewable Energy, Elsevier, vol. 130(C), pages 1226-1236.
    19. Li, Yi & Yu, Hao & Tang, Dong & Li, Yi & Zhang, Guijin & Liu, Yaning, 2022. "A comparison of compressed carbon dioxide energy storage and compressed air energy storage in aquifers using numerical methods," Renewable Energy, Elsevier, vol. 187(C), pages 1130-1153.
    20. Qin, Chao (Chris) & Loth, Eric, 2021. "Isothermal compressed wind energy storage using abandoned oil/gas wells or coal mines," Applied Energy, Elsevier, vol. 292(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:81:y:2018:i:p2:p:2071-2087. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.