IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i4p635-d206553.html
   My bibliography  Save this article

Analysis of Doubly Fed Induction Generators Participating in Continuous Frequency Regulation with Different Wind Speeds Considering Regulation Power Constraints

Author

Listed:
  • Tingting Cai

    (School of electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China
    Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology, Ministry of Education (Northeast Electric Power University), Jilin 132012, China)

  • Sutong Liu

    (Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology, Ministry of Education (Northeast Electric Power University), Jilin 132012, China)

  • Gangui Yan

    (Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology, Ministry of Education (Northeast Electric Power University), Jilin 132012, China)

  • Hongbo Liu

    (Key Laboratory of Modern Power System Simulation and Control & Renewable Energy Technology, Ministry of Education (Northeast Electric Power University), Jilin 132012, China)

Abstract

Wind turbines (WTs) participate in frequency regulation, which is one of the means to solve the problem of inadequate regulation capacity in power systems with a high proportion of renewable energy. The doubly fed induction generator (DFIG) can reserve part of power to achieve bidirectional regulation capability through rotor over-speed and increasing pitch angle. In this paper, it is pointed out that the available bidirectional regulation power of the WT is constrained by the maximum regulation power under the rotor speed regulation. The regulation power constraints under the pitch regulation considering the time scale are calculated. The adjustment coefficient of WT participating in frequency regulation is designed. Considering the regulation power constraints, the frequency difference interval in which the WT can provide the regulation power according to the adjustment coefficient is analyzed. The rotor speed and pitch coordinated control strategy of DFIG with different wind speeds is designed. Based on 24-hour measured data from a wind farm, the power constraints and their effects of WTs in the wind farm participating in frequency regulation are verified by simulation. The regulation power of the wind farm, frequency quality, and wind power utilization under the different control strategies are analyzed. The results show that the effects of bidirectional power constraints must be taken into account when evaluating the effectiveness of WTs in continuous frequency regulation.

Suggested Citation

  • Tingting Cai & Sutong Liu & Gangui Yan & Hongbo Liu, 2019. "Analysis of Doubly Fed Induction Generators Participating in Continuous Frequency Regulation with Different Wind Speeds Considering Regulation Power Constraints," Energies, MDPI, vol. 12(4), pages 1-20, February.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:635-:d:206553
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/4/635/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/4/635/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Di Zheng & Jinxin Ouyang & Xiaofu Xiong & Chao Xiao & Mengyang Li, 2018. "A System Transient Stability Enhancement Control Method Using Doubly Fed Induction Generator Wind Turbine with Considering Its Power Constraints," Energies, MDPI, vol. 11(4), pages 1-14, April.
    2. Dileep, G. & Singh, S.N., 2015. "Maximum power point tracking of solar photovoltaic system using modified perturbation and observation method," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 109-129.
    3. Unai Elosegui & Igor Egana & Alain Ulazia & Gabriel Ibarra-Berastegi, 2018. "Pitch Angle Misalignment Correction Based on Benchmarking and Laser Scanner Measurement in Wind Farms," Energies, MDPI, vol. 11(12), pages 1-20, December.
    4. Xing Luo & Jihong Wang & Jacek D. Wojcik & Jianguo Wang & Decai Li & Mihai Draganescu & Yaowang Li & Shihong Miao, 2018. "Review of Voltage and Frequency Grid Code Specifications for Electrical Energy Storage Applications," Energies, MDPI, vol. 11(5), pages 1-26, April.
    5. Khaoula Ghefiri & Soufiene Bouallègue & Izaskun Garrido & Aitor J. Garrido & Joseph Haggège, 2017. "Complementary Power Control for Doubly Fed Induction Generator-Based Tidal Stream Turbine Generation Plants," Energies, MDPI, vol. 10(7), pages 1-23, June.
    6. Thongchart Kerdphol & Fathin Saifur Rahman & Yasunori Mitani, 2018. "Virtual Inertia Control Application to Enhance Frequency Stability of Interconnected Power Systems with High Renewable Energy Penetration," Energies, MDPI, vol. 11(4), pages 1-16, April.
    7. Yi Tang & Jianfeng Dai & Jia Ning & Jie Dang & Yan Li & Xinshou Tian, 2017. "An Extended System Frequency Response Model Considering Wind Power Participation in Frequency Regulation," Energies, MDPI, vol. 10(11), pages 1-18, November.
    8. Keshan He & Liangwen Qi & Liming Zheng & Yan Chen, 2018. "Combined Pitch and Trailing Edge Flap Control for Load Mitigation of Wind Turbines," Energies, MDPI, vol. 11(10), pages 1-16, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ukashatu Abubakar & Saad Mekhilef & Hazlie Mokhlis & Mehdi Seyedmahmoudian & Ben Horan & Alex Stojcevski & Hussain Bassi & Muhyaddin Jamal Hosin Rawa, 2018. "Transient Faults in Wind Energy Conversion Systems: Analysis, Modelling Methodologies and Remedies," Energies, MDPI, vol. 11(9), pages 1-33, August.
    2. Min Lu & Yu Chen & Debin Zhang & Jingyuan Su & Yong Kang, 2019. "Virtual Synchronous Control Based on Control Winding Orientation for Brushless Doubly Fed Induction Generator (BDFIG) Wind Turbines Under Symmetrical Grid Faults," Energies, MDPI, vol. 12(2), pages 1-12, January.
    3. Alain Ulazia & Ander Nafarrate & Gabriel Ibarra-Berastegi & Jon Sáenz & Sheila Carreno-Madinabeitia, 2019. "The Consequences of Air Density Variations over Northeastern Scotland for Offshore Wind Energy Potential," Energies, MDPI, vol. 12(13), pages 1-18, July.
    4. Ladislas Mutunda Kangaji & Lagouge Tartibu & Pitshou N. Bokoro, 2023. "Modelling and Performance Analysis of a Tidal Current Turbine Connected to the Grid Using an Inductance (LCL) Filter," Energies, MDPI, vol. 16(16), pages 1-23, August.
    5. Başoğlu, Mustafa Engin & Çakır, Bekir, 2016. "Comparisons of MPPT performances of isolated and non-isolated DC–DC converters by using a new approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1100-1113.
    6. Kaleem Ullah & Abdul Basit & Zahid Ullah & Sheraz Aslam & Herodotos Herodotou, 2021. "Automatic Generation Control Strategies in Conventional and Modern Power Systems: A Comprehensive Overview," Energies, MDPI, vol. 14(9), pages 1-43, April.
    7. Nejra Beganovic & Jackson G. Njiri & Dirk Söffker, 2018. "Reduction of Structural Loads in Wind Turbines Based on an Adapted Control Strategy Concerning Online Fatigue Damage Evaluation Models," Energies, MDPI, vol. 11(12), pages 1-15, December.
    8. Mararakanye, Ndamulelo & Bekker, Bernard, 2019. "Renewable energy integration impacts within the context of generator type, penetration level and grid characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 441-451.
    9. Carlos A. Platero & José A. Sánchez & Christophe Nicolet & Philippe Allenbach, 2019. "Hydropower Plants Frequency Regulation Depending on Upper Reservoir Water Level," Energies, MDPI, vol. 12(9), pages 1-15, April.
    10. Marwa Hassan & Alsnosy Balbaa & Hanady H. Issa & Noha H. El-Amary, 2018. "Asymptotic Output Tracked Artificial Immunity Controller for Eco-Maximum Power Point Tracking of Wind Turbine Driven by Doubly Fed Induction Generator," Energies, MDPI, vol. 11(10), pages 1-25, October.
    11. Belhachat, Faiza & Larbes, Cherif, 2017. "Global maximum power point tracking based on ANFIS approach for PV array configurations under partial shading conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 875-889.
    12. Yifei Wang & Youxin Yuan, 2019. "Inertia Provision and Small Signal Stability Analysis of a Wind-Power Generation System Using Phase-Locked Synchronized Equation," Sustainability, MDPI, vol. 11(5), pages 1-21, March.
    13. Saif Ul Islam & Kamran Zeb & Soobae Kim, 2022. "Design of Robust Fuzzy Logic Controller Based on Gradient Descent Algorithm with Parallel-Resonance Type Fault Current Limiter for Grid-Tied PV System," Sustainability, MDPI, vol. 14(19), pages 1-20, September.
    14. Ana Fernández-Guillamón & Antonio Vigueras-Rodríguez & Emilio Gómez-Lázaro & Ángel Molina-García, 2018. "Fast Power Reserve Emulation Strategy for VSWT Supporting Frequency Control in Multi-Area Power Systems," Energies, MDPI, vol. 11(10), pages 1-20, October.
    15. T. Nagadurga & P. V. R. L. Narasimham & V. S. Vakula, 2021. "Global Maximum Power Point Tracking of Solar Photovoltaic Strings under Partial Shading Conditions Using Cat Swarm Optimization Technique," Sustainability, MDPI, vol. 13(19), pages 1-20, October.
    16. Khaoula Ghefiri & Aitor J. Garrido & Eugen Rusu & Soufiene Bouallègue & Joseph Haggège & Izaskun Garrido, 2018. "Fuzzy Supervision Based-Pitch Angle Control of a Tidal Stream Generator for a Disturbed Tidal Input," Energies, MDPI, vol. 11(11), pages 1-21, November.
    17. Shuting Wan & Kanru Cheng & Xiaoling Sheng & Xuan Wang, 2019. "Characteristic Analysis of DFIG Wind Turbine under Blade Mass Imbalance Fault in View of Wind Speed Spatiotemporal Distribution," Energies, MDPI, vol. 12(16), pages 1-14, August.
    18. Li, Qiyu & Zhao, Shengdun & Wang, Mengqi & Zou, Zhongyue & Wang, Bin & Chen, Qixu, 2017. "An improved perturbation and observation maximum power point tracking algorithm based on a PV module four-parameter model for higher efficiency," Applied Energy, Elsevier, vol. 195(C), pages 523-537.
    19. Alexis B. Rey-Boué & N. F. Guerrero-Rodríguez & Johannes Stöckl & Thomas I. Strasser, 2019. "Modeling and Design of the Vector Control for a Three-Phase Single-Stage Grid-Connected PV System with LVRT Capability according to the Spanish Grid Code," Energies, MDPI, vol. 12(15), pages 1-28, July.
    20. Silva, R.N. & Nunes, M.M. & Oliveira, F.L. & Oliveira, T.F. & Brasil, A.C.P. & Pinto, M.S.S., 2023. "Dynamical analysis of a novel hybrid oceanic tidal-wave energy converter system," Energy, Elsevier, vol. 263(PD).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:4:p:635-:d:206553. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.