IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i3p629-d135854.html
   My bibliography  Save this article

Effect of Temperature and Mineral Matter on the Formation of NOx Precursors during Fast Pyrolysis of 2,5-Diketopiperazine

Author

Listed:
  • Jianqiang Zhou

    (National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, Beijing 102206, China)

  • Pan Gao

    (National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, Beijing 102206, China)

  • Changqing Dong

    (National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, Beijing 102206, China)

  • Yongping Yang

    (National Engineering Laboratory for Biomass Power Generation Equipment, North China Electric Power University, Beijing 102206, China)

Abstract

2,5-diketopiperazine (DKP) was used as a N-containing model compound to investigate the formation pathway of NOx precursors (HCN, NH 3 , and HNCO) during biomass pyrolysis. The experiment was carried out using a tube furnace coupled with a Fourier Transform Infrared Spectrometer in an argon atmosphere. The results showed that NH 3 , HCN, and HNCO were the major N-containing species formed during DKP fast pyrolysis. The largest yield was HCN, followed by NH 3 and lastly HNCO. When the pyrolysis temperature was increased, the yield of NH 3 increased slowly, but the yield of HCN decreased slightly at 800~950 °C and the change accelerate rapidly above 950 °C. Then NH 3 became the main product above 1020 °C. The temperature influence was negligible on the selectivity between HCN and NH 3 from pyrolysis of DKP. H radicals played an important role in competitive reactions. It was also noted that the presence of Na + , K + , Ca 2+ , and Mg 2+ exhibited a catalytic effect on nitrogen conversion during the DKP fast pyrolysis process. K + and Na + were beneficial to the yield of NH 3 , but not to the yield of HCN. Ca 2+ and Mg 2+ could promote the formation of HCN, but prevent the formation of NH 3 .

Suggested Citation

  • Jianqiang Zhou & Pan Gao & Changqing Dong & Yongping Yang, 2018. "Effect of Temperature and Mineral Matter on the Formation of NOx Precursors during Fast Pyrolysis of 2,5-Diketopiperazine," Energies, MDPI, vol. 11(3), pages 1-10, March.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:629-:d:135854
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/3/629/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/3/629/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pan Gao & Lu Xue & Qiang Lu & Changqing Dong, 2015. "Effects of Alkali and Alkaline Earth Metals on N-Containing Species Release during Rice Straw Pyrolysis," Energies, MDPI, vol. 8(11), pages 1-12, November.
    2. Zvicevičius, Egidijus & Raila, Algirdas & Čiplienė, Aušra & Černiauskienė, Živilė & Kadžiulienė, Žydrė & Tilvikienė, Vita, 2018. "Effects of moisture and pressure on densification process of raw material from Artemisia dubia Wall," Renewable Energy, Elsevier, vol. 119(C), pages 185-192.
    3. Imen Ghouma & Mejdi Jeguirim & Uta Sager & Lionel Limousy & Simona Bennici & Eckhard Däuber & Christof Asbach & Roman Ligotski & Frank Schmidt & Abdelmottaleb Ouederni, 2017. "The Potential of Activated Carbon Made of Agro-Industrial Residues in NO x Immissions Abatement," Energies, MDPI, vol. 10(10), pages 1-15, September.
    4. Ren, Qiangqiang & Zhao, Changsui, 2013. "NOx and N2O precursors (NH3 and HCN) from biomass pyrolysis: interaction between amino acid and mineral matter," Applied Energy, Elsevier, vol. 112(C), pages 170-174.
    5. Hongfang Chen & Yin Wang & Guangwen Xu & Kunio Yoshikawa, 2012. "Fuel-N Evolution during the Pyrolysis of Industrial Biomass Wastes with High Nitrogen Content," Energies, MDPI, vol. 5(12), pages 1-21, December.
    6. Chen, Hongfang & Namioka, Tomoaki & Yoshikawa, Kunio, 2011. "Characteristics of tar, NOx precursors and their absorption performance with different scrubbing solvents during the pyrolysis of sewage sludge," Applied Energy, Elsevier, vol. 88(12), pages 5032-5041.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guo, Shuai & Liu, Tiecheng & Hui, Jicheng & Che, Deyong & Li, Xingcan & Sun, Baizhong & Li, Shaohua, 2019. "Effects of calcium oxide on nitrogen oxide precursor formation during sludge protein pyrolysis," Energy, Elsevier, vol. 189(C).
    2. Lebendig, Florian & Schmid, Daniel & Karlström, Oskar & Yrjas, Patrik & Müller, Michael, 2024. "Influence of pre-treatment of straw biomass and additives on the release of nitrogen species during combustion and gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaorui Liu & Zhongyang Luo & Chunjiang Yu & Bitao Jin & Hanchao Tu, 2018. "Release Mechanism of Fuel-N into NO x and N 2 O Precursors during Pyrolysis of Rice Straw," Energies, MDPI, vol. 11(3), pages 1-13, February.
    2. Zhan, Hao & Zhuang, Xiuzheng & Song, Yanpei & Yin, Xiuli & Wu, Chuangzhi, 2018. "Insights into the evolution of fuel-N to NOx precursors during pyrolysis of N-rich nonlignocellulosic biomass," Applied Energy, Elsevier, vol. 219(C), pages 20-33.
    3. Unyaphan, Siriwat & Tarnpradab, Thanyawan & Takahashi, Fumitake & Yoshikawa, Kunio, 2017. "Improvement of tar removal performance of oil scrubber by producing syngas microbubbles," Applied Energy, Elsevier, vol. 205(C), pages 802-812.
    4. Guo, Shuai & Liu, Tiecheng & Hui, Jicheng & Che, Deyong & Li, Xingcan & Sun, Baizhong & Li, Shaohua, 2019. "Effects of calcium oxide on nitrogen oxide precursor formation during sludge protein pyrolysis," Energy, Elsevier, vol. 189(C).
    5. Luo, Lei & Zhang, Hai & Jiao, Anyao & Jiang, Yuanzhen & Liu, Jiaxun & Jiang, Xiumin & Tian, Feng, 2019. "Study on the formation and dissipation mechanism of gas phase products during rapid pyrolysis of superfine pulverized coal in entrained flow reactor," Energy, Elsevier, vol. 173(C), pages 985-994.
    6. Fang, Neng & Li, Zhengqi & Xie, Cheng & Liu, Shuxuan & Lu, Yue & Zeng, Lingyan & Chen, Zhichao, 2021. "Influence of the multi-burner bias angle on the air/particle flow characteristics in an improved fly ash entrained-flow gasifier," Energy, Elsevier, vol. 234(C).
    7. Fang, Shiwen & Deng, Zhengbing & Lin, Yan & Huang, Zhen & Ding, Lixing & Deng, Lisheng & Huang, Hongyu, 2021. "Nitrogen migration in sewage sludge chemical looping gasification using copper slag modified by NiO as an oxygen carrier," Energy, Elsevier, vol. 228(C).
    8. Huan Li & Huawei Mou & Nan Zhao & Yaohong Yu & Quan Hong & Mperejekumana Philbert & Yuguang Zhou & Hossein Beidaghy Dizaji & Renjie Dong, 2021. "Nitrogen Migration during Pyrolysis of Raw and Acid Leached Maize Straw," Sustainability, MDPI, vol. 13(7), pages 1-15, March.
    9. Evangelopoulos, Panagiotis & Kantarelis, Efthymios & Yang, Weihong, 2017. "Experimental investigation of the influence of reaction atmosphere on the pyrolysis of printed circuit boards," Applied Energy, Elsevier, vol. 204(C), pages 1065-1073.
    10. Amna Abdeljaoued & Nausika Querejeta & Inés Durán & Noelia Álvarez-Gutiérrez & Covadonga Pevida & Mohamed Hachemi Chahbani, 2018. "Preparation and Evaluation of a Coconut Shell-Based Activated Carbon for CO 2 /CH 4 Separation," Energies, MDPI, vol. 11(7), pages 1-14, July.
    11. Marcin Bielecki & Valentina Zubkova & Andrzej Strojwas, 2022. "Influence of Densification on the Pyrolytic Behavior of Agricultural Biomass Waste and the Characteristics of Pyrolysis Products," Energies, MDPI, vol. 15(12), pages 1-20, June.
    12. Chen, Hui & Chen, Dezhen & Hong, Liu, 2015. "Influences of activation agent impregnated sewage sludge pyrolysis on emission characteristics of volatile combustion and De-NOx performance of activated char," Applied Energy, Elsevier, vol. 156(C), pages 767-775.
    13. Cao, Songshan & Duan, Feng & Wang, Ping & Chyang, ChienSong, 2018. "Biochar contribution in biomass reburning technology and transformation mechanism of its nitrogen foundational groups at different oxygen contents," Energy, Elsevier, vol. 155(C), pages 272-280.
    14. Ren, Qiangqiang & Zhao, Changsui, 2015. "Evolution of fuel-N in gas phase during biomass pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 408-418.
    15. Li, Chenlin & Aston, John E. & Lacey, Jeffrey A. & Thompson, Vicki S. & Thompson, David N., 2016. "Impact of feedstock quality and variation on biochemical and thermochemical conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 525-536.
    16. Hongfang Chen & Yin Wang & Guangwen Xu & Kunio Yoshikawa, 2012. "Fuel-N Evolution during the Pyrolysis of Industrial Biomass Wastes with High Nitrogen Content," Energies, MDPI, vol. 5(12), pages 1-21, December.
    17. Benítez, Almudena & Amaro-Gahete, Juan & Chien, Yu-Chuan & Caballero, Álvaro & Morales, Julián & Brandell, Daniel, 2022. "Recent advances in lithium-sulfur batteries using biomass-derived carbons as sulfur host," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    18. Pan Gao & Lu Xue & Qiang Lu & Changqing Dong, 2015. "Effects of Alkali and Alkaline Earth Metals on N-Containing Species Release during Rice Straw Pyrolysis," Energies, MDPI, vol. 8(11), pages 1-12, November.
    19. Deneb Peredo-Mancilla & Imen Ghouma & Cecile Hort & Camelia Matei Ghimbeu & Mejdi Jeguirim & David Bessieres, 2018. "CO 2 and CH 4 Adsorption Behavior of Biomass-Based Activated Carbons," Energies, MDPI, vol. 11(11), pages 1-13, November.
    20. Mejdi Jeguirim & Lionel Limousy, 2017. "Biomass Chars: Elaboration, Characterization and Applications," Energies, MDPI, vol. 10(12), pages 1-7, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:3:p:629-:d:135854. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.