IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v189y2019ics0360544219319127.html
   My bibliography  Save this article

Effects of calcium oxide on nitrogen oxide precursor formation during sludge protein pyrolysis

Author

Listed:
  • Guo, Shuai
  • Liu, Tiecheng
  • Hui, Jicheng
  • Che, Deyong
  • Li, Xingcan
  • Sun, Baizhong
  • Li, Shaohua

Abstract

The addition of CaO has been used to reduce the harmful NOx precursors (NH3 and HCN) generated by the pyrolysis of municipal sewage sludge. However, the underlying reduction mechanism remains unclear. To address this issue, we systematically investigated the effects of temperature and CaO addition on the generation of NH3 and HCN during the pyrolysis of sludge protein and a model protein. With increasing temperature from 300 to 900 °C, the inhibitory effect of CaO on NH3 emission was observed to fluctuate, maximizing at 400 °C. The inhibition was attributed to the reaction of CaO with nitrogen in the produced char to form CaCxNy, resulting in enhanced fixation of the char pyridines and nitriles. The nitriles exhibited high thermal stability and inertness to CaO. The increased nitrile content at high temperatures was attributed to the formation of the species from amines and N-containing heterocycles. The CaCx produced by the thermal decomposition of CaCxNy above 700 °C was found to increase P–N fixation and decrease NH3 formation. The observed poor inhibitory effect of CaO on NOx precursor formation at 650 °C was attributed to the production of NH3 via HCN hydrolysis. Because HCN directly reacted with CaO, the inhibition of HCN formation was highest at 650–900 °C, preventing the conversion of char nitriles into HCN.

Suggested Citation

  • Guo, Shuai & Liu, Tiecheng & Hui, Jicheng & Che, Deyong & Li, Xingcan & Sun, Baizhong & Li, Shaohua, 2019. "Effects of calcium oxide on nitrogen oxide precursor formation during sludge protein pyrolysis," Energy, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219319127
    DOI: 10.1016/j.energy.2019.116217
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544219319127
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2019.116217?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jianqiang Zhou & Pan Gao & Changqing Dong & Yongping Yang, 2018. "Effect of Temperature and Mineral Matter on the Formation of NOx Precursors during Fast Pyrolysis of 2,5-Diketopiperazine," Energies, MDPI, vol. 11(3), pages 1-10, March.
    2. Ren, Qiangqiang & Zhao, Changsui, 2013. "NOx and N2O precursors (NH3 and HCN) from biomass pyrolysis: interaction between amino acid and mineral matter," Applied Energy, Elsevier, vol. 112(C), pages 170-174.
    3. Liu, Huan & Yi, Linlin & Zhang, Qiang & Hu, Hongyun & Lu, Geng & Li, Aijun & Yao, Hong, 2016. "Co-production of clean syngas and ash adsorbent during sewage sludge gasification: Synergistic effect of Fenton peroxidation and CaO conditioning," Applied Energy, Elsevier, vol. 179(C), pages 1062-1068.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lebendig, Florian & Schmid, Daniel & Karlström, Oskar & Yrjas, Patrik & Müller, Michael, 2024. "Influence of pre-treatment of straw biomass and additives on the release of nitrogen species during combustion and gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Huan Li & Huawei Mou & Nan Zhao & Yaohong Yu & Quan Hong & Mperejekumana Philbert & Yuguang Zhou & Hossein Beidaghy Dizaji & Renjie Dong, 2021. "Nitrogen Migration during Pyrolysis of Raw and Acid Leached Maize Straw," Sustainability, MDPI, vol. 13(7), pages 1-15, March.
    3. Yang, Xiaoxia & Gu, Shengshen & Kheradmand, Amanj & Kan, Tao & He, Jing & Strezov, Vladimir & Zou, Ruiping & Yu, Aibing & Jiang, Yijiao, 2022. "Tunable syngas production from biomass: Synergistic effect of steam, Ni–CaO catalyst, and biochar," Energy, Elsevier, vol. 254(PB).
    4. Zhang, Pengchao & Hu, Hongyun & Tang, Hua & Yang, Yuhan & Liu, Huan & Lu, Qiang & Li, Xian & Worasuwannarak, Nakorn & Yao, Hong, 2019. "In-depth experimental study of pyrolysis characteristics of raw and cooking treated shrimp shell samples," Renewable Energy, Elsevier, vol. 139(C), pages 730-738.
    5. Ren, Qiangqiang & Zhao, Changsui, 2015. "Evolution of fuel-N in gas phase during biomass pyrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 408-418.
    6. Peters, Jens F. & Banks, Scott W. & Bridgwater, Anthony V. & Dufour, Javier, 2017. "A kinetic reaction model for biomass pyrolysis processes in Aspen Plus," Applied Energy, Elsevier, vol. 188(C), pages 595-603.
    7. Jianqiang Zhou & Pan Gao & Changqing Dong & Yongping Yang, 2018. "Effect of Temperature and Mineral Matter on the Formation of NOx Precursors during Fast Pyrolysis of 2,5-Diketopiperazine," Energies, MDPI, vol. 11(3), pages 1-10, March.
    8. Carotenuto, Alberto & Di Fraia, Simona & Massarotti, Nicola & Sobek, Szymon & Uddin, M. Rakib & Vanoli, Laura & Werle, Sebastian, 2023. "Predictive modeling for energy recovery from sewage sludge gasification," Energy, Elsevier, vol. 263(PB).
    9. Sun, Yongqi & Chen, Jingjing & Zhang, Zuotai, 2019. "General roles of sludge ash, CaO and Al2O3 on the sludge pyrolysis toward clean utilizations," Applied Energy, Elsevier, vol. 233, pages 412-423.
    10. Pan Gao & Lu Xue & Qiang Lu & Changqing Dong, 2015. "Effects of Alkali and Alkaline Earth Metals on N-Containing Species Release during Rice Straw Pyrolysis," Energies, MDPI, vol. 8(11), pages 1-12, November.
    11. Hu, Mian & Zhang, Haiyang & Ye, Zhiheng & Ma, Jiajia & Chen, Zhihua & Wang, Junliang & Wang, Cheng & Pan, Zhiyan, 2022. "Thermogravimetric kinetics and pyrolytic tri-state products analysis towards insights into understanding the pyrolysis mechanism of Spirulina platensis with calcium oxide," Renewable Energy, Elsevier, vol. 184(C), pages 498-509.
    12. Xiaorui Liu & Zhongyang Luo & Chunjiang Yu & Bitao Jin & Hanchao Tu, 2018. "Release Mechanism of Fuel-N into NO x and N 2 O Precursors during Pyrolysis of Rice Straw," Energies, MDPI, vol. 11(3), pages 1-13, February.
    13. Zhan, Hao & Zhuang, Xiuzheng & Song, Yanpei & Yin, Xiuli & Wu, Chuangzhi, 2018. "Insights into the evolution of fuel-N to NOx precursors during pyrolysis of N-rich nonlignocellulosic biomass," Applied Energy, Elsevier, vol. 219(C), pages 20-33.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:189:y:2019:i:c:s0360544219319127. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.