IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i8p1149-d106966.html
   My bibliography  Save this article

A Comparative Study of Three Improved Algorithms Based on Particle Filter Algorithms in SOC Estimation of Lithium Ion Batteries

Author

Listed:
  • Bizhong Xia

    (Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China)

  • Zhen Sun

    (Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China)

  • Ruifeng Zhang

    (Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
    Sunwoda Electronic Co. Ltd., Shenzhen 518108, China)

  • Deyu Cui

    (Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China)

  • Zizhou Lao

    (Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China)

  • Wei Wang

    (Sunwoda Electronic Co. Ltd., Shenzhen 518108, China)

  • Wei Sun

    (Sunwoda Electronic Co. Ltd., Shenzhen 518108, China)

  • Yongzhi Lai

    (Sunwoda Electronic Co. Ltd., Shenzhen 518108, China)

  • Mingwang Wang

    (Sunwoda Electronic Co. Ltd., Shenzhen 518108, China)

Abstract

The state of charge (SOC) is an important parameter for batteries, especially those for electric vehicles. Since SOC cannot be obtained directly by measurement, SOC estimation methods are required. In this paper, three model-based methods, including the extended particle filter (EPF), cubature particle filter (CPF), and unscented particle filter (UPF), are compared in terms of complexity, accuracy, and robustness. The second-order resistor-capacitor (RC) equivalent circuit model is selected as the circuit model of the lithium-ion battery, and the parameters of the model are obtained by off-line identification. Then, the City test is applied to compare the performance of the methods. The experimental results show that the EPF method exhibits low complexity and fast running speed, but poor accuracy and robustness. Compared with the EPF method, the complexity of the CPF and UPF methods is relatively high, but these models offer improved accuracy and robustness.

Suggested Citation

  • Bizhong Xia & Zhen Sun & Ruifeng Zhang & Deyu Cui & Zizhou Lao & Wei Wang & Wei Sun & Yongzhi Lai & Mingwang Wang, 2017. "A Comparative Study of Three Improved Algorithms Based on Particle Filter Algorithms in SOC Estimation of Lithium Ion Batteries," Energies, MDPI, vol. 10(8), pages 1-14, August.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1149-:d:106966
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/8/1149/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/8/1149/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kim, Jonghoon & Cho, B.H., 2013. "Screening process-based modeling of the multi-cell battery string in series and parallel connections for high accuracy state-of-charge estimation," Energy, Elsevier, vol. 57(C), pages 581-599.
    2. Bizhong Xia & Zhen Sun & Ruifeng Zhang & Zizhou Lao, 2017. "A Cubature Particle Filter Algorithm to Estimate the State of the Charge of Lithium-Ion Batteries Based on a Second-Order Equivalent Circuit Model," Energies, MDPI, vol. 10(4), pages 1-15, April.
    3. Ye, Min & Guo, Hui & Cao, Binggang, 2017. "A model-based adaptive state of charge estimator for a lithium-ion battery using an improved adaptive particle filter," Applied Energy, Elsevier, vol. 190(C), pages 740-748.
    4. He, Yao & Liu, XingTao & Zhang, ChenBin & Chen, ZongHai, 2013. "A new model for State-of-Charge (SOC) estimation for high-power Li-ion batteries," Applied Energy, Elsevier, vol. 101(C), pages 808-814.
    5. Bizhong Xia & Haiqing Wang & Mingwang Wang & Wei Sun & Zhihui Xu & Yongzhi Lai, 2015. "A New Method for State of Charge Estimation of Lithium-Ion Battery Based on Strong Tracking Cubature Kalman Filter," Energies, MDPI, vol. 8(12), pages 1-15, November.
    6. Sun, Fengchun & Hu, Xiaosong & Zou, Yuan & Li, Siguang, 2011. "Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles," Energy, Elsevier, vol. 36(5), pages 3531-3540.
    7. Bizhong Xia & Haiqing Wang & Yong Tian & Mingwang Wang & Wei Sun & Zhihui Xu, 2015. "State of Charge Estimation of Lithium-Ion Batteries Using an Adaptive Cubature Kalman Filter," Energies, MDPI, vol. 8(6), pages 1-21, June.
    8. Ng, Kong Soon & Moo, Chin-Sien & Chen, Yi-Ping & Hsieh, Yao-Ching, 2009. "Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries," Applied Energy, Elsevier, vol. 86(9), pages 1506-1511, September.
    9. Shen, Yanqing, 2014. "Hybrid unscented particle filter based state-of-charge determination for lead-acid batteries," Energy, Elsevier, vol. 74(C), pages 795-803.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zeeshan Ahmad Khan & Prashant Shrivastava & Syed Muhammad Amrr & Saad Mekhilef & Abdullah A. Algethami & Mehdi Seyedmahmoudian & Alex Stojcevski, 2022. "A Comparative Study on Different Online State of Charge Estimation Algorithms for Lithium-Ion Batteries," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
    2. Agarwal, Daksh & Potnuru, Rakesh & Kaushik, Chiranjeev & Darla, Vinay Rajesh & Kulkarni, Kaustubh & Garg, Ashish & Gupta, Raju Kumar & Tiwari, Naveen & Nalwa, Kanwar Singh, 2022. "Recent advances in the modeling of fundamental processes in liquid metal batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    3. Bizhong Xia & Zheng Zhang & Zizhou Lao & Wei Wang & Wei Sun & Yongzhi Lai & Mingwang Wang, 2018. "Strong Tracking of a H-Infinity Filter in Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 11(6), pages 1-20, June.
    4. Ingvild B. Espedal & Asanthi Jinasena & Odne S. Burheim & Jacob J. Lamb, 2021. "Current Trends for State-of-Charge (SoC) Estimation in Lithium-Ion Battery Electric Vehicles," Energies, MDPI, vol. 14(11), pages 1-24, June.
    5. Zhihang Zhang & Languang Lu & Yalun Li & Hewu Wang & Minggao Ouyang, 2023. "Accurate Remaining Available Energy Estimation of LiFePO 4 Battery in Dynamic Frequency Regulation for EVs with Thermal-Electric-Hysteresis Model," Energies, MDPI, vol. 16(13), pages 1-28, July.
    6. Wenxian Duan & Chuanxue Song & Silun Peng & Feng Xiao & Yulong Shao & Shixin Song, 2020. "An Improved Gated Recurrent Unit Network Model for State-of-Charge Estimation of Lithium-Ion Battery," Energies, MDPI, vol. 13(23), pages 1-19, December.
    7. Zizhou Lao & Bizhong Xia & Wei Wang & Wei Sun & Yongzhi Lai & Mingwang Wang, 2018. "A Novel Method for Lithium-Ion Battery Online Parameter Identification Based on Variable Forgetting Factor Recursive Least Squares," Energies, MDPI, vol. 11(6), pages 1-15, May.
    8. Wang, Shun-Li & Fernandez, Carlos & Zou, Chuan-Yun & Yu, Chun-Mei & Chen, Lei & Zhang, Li, 2019. "A comprehensive working state monitoring method for power battery packs considering state of balance and aging correction," Energy, Elsevier, vol. 171(C), pages 444-455.
    9. Victor Pizarro-Carmona & Marcelo Cortés-Carmona & Rodrigo Palma-Behnke & Williams Calderón-Muñoz & Marcos E. Orchard & Pablo A. Estévez, 2019. "An Optimized Impedance Model for the Estimation of the State-of-Charge of a Li-Ion Cell: The Case of a LiFePO 4 (ANR26650)," Energies, MDPI, vol. 12(4), pages 1-16, February.
    10. Ruifeng Zhang & Bizhong Xia & Baohua Li & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang & Mingwang Wang, 2018. "Study on the Characteristics of a High Capacity Nickel Manganese Cobalt Oxide (NMC) Lithium-Ion Battery—An Experimental Investigation," Energies, MDPI, vol. 11(9), pages 1-20, August.
    11. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    12. Babaeiyazdi, Iman & Rezaei-Zare, Afshin & Shokrzadeh, Shahab, 2021. "State of charge prediction of EV Li-ion batteries using EIS: A machine learning approach," Energy, Elsevier, vol. 223(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Bizhong Xia & Zhen Sun & Ruifeng Zhang & Zizhou Lao, 2017. "A Cubature Particle Filter Algorithm to Estimate the State of the Charge of Lithium-Ion Batteries Based on a Second-Order Equivalent Circuit Model," Energies, MDPI, vol. 10(4), pages 1-15, April.
    3. Bizhong Xia & Wenhui Zheng & Ruifeng Zhang & Zizhou Lao & Zhen Sun, 2017. "A Novel Observer for Lithium-Ion Battery State of Charge Estimation in Electric Vehicles Based on a Second-Order Equivalent Circuit Model," Energies, MDPI, vol. 10(8), pages 1-20, August.
    4. Bizhong Xia & Zizhou Lao & Ruifeng Zhang & Yong Tian & Guanghao Chen & Zhen Sun & Wei Wang & Wei Sun & Yongzhi Lai & Mingwang Wang & Huawen Wang, 2017. "Online Parameter Identification and State of Charge Estimation of Lithium-Ion Batteries Based on Forgetting Factor Recursive Least Squares and Nonlinear Kalman Filter," Energies, MDPI, vol. 11(1), pages 1-23, December.
    5. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    6. Li, Yanwen & Wang, Chao & Gong, Jinfeng, 2017. "A multi-model probability SOC fusion estimation approach using an improved adaptive unscented Kalman filter technique," Energy, Elsevier, vol. 141(C), pages 1402-1415.
    7. Yang, Fangfang & Xing, Yinjiao & Wang, Dong & Tsui, Kwok-Leung, 2016. "A comparative study of three model-based algorithms for estimating state-of-charge of lithium-ion batteries under a new combined dynamic loading profile," Applied Energy, Elsevier, vol. 164(C), pages 387-399.
    8. Bizhong Xia & Rui Huang & Zizhou Lao & Ruifeng Zhang & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang & Mingwang Wang, 2018. "Online Parameter Identification of Lithium-Ion Batteries Using a Novel Multiple Forgetting Factor Recursive Least Square Algorithm," Energies, MDPI, vol. 11(11), pages 1-19, November.
    9. Bizhong Xia & Shengkun Guo & Wei Wang & Yongzhi Lai & Huawen Wang & Mingwang Wang & Weiwei Zheng, 2018. "A State of Charge Estimation Method Based on Adaptive Extended Kalman-Particle Filtering for Lithium-ion Batteries," Energies, MDPI, vol. 11(10), pages 1-15, October.
    10. Hu, Lin & Hu, Xiaosong & Che, Yunhong & Feng, Fei & Lin, Xianke & Zhang, Zhiyong, 2020. "Reliable state of charge estimation of battery packs using fuzzy adaptive federated filtering," Applied Energy, Elsevier, vol. 262(C).
    11. Li, Xiaoyu & Xu, Jianhua & Hong, Jianxun & Tian, Jindong & Tian, Yong, 2021. "State of energy estimation for a series-connected lithium-ion battery pack based on an adaptive weighted strategy," Energy, Elsevier, vol. 214(C).
    12. Shrivastava, Prashant & Soon, Tey Kok & Idris, Mohd Yamani Idna Bin & Mekhilef, Saad, 2019. "Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    13. Xia, Bizhong & Cui, Deyu & Sun, Zhen & Lao, Zizhou & Zhang, Ruifeng & Wang, Wei & Sun, Wei & Lai, Yongzhi & Wang, Mingwang, 2018. "State of charge estimation of lithium-ion batteries using optimized Levenberg-Marquardt wavelet neural network," Energy, Elsevier, vol. 153(C), pages 694-705.
    14. Hannan, M.A. & Lipu, M.S.H. & Hussain, A. & Mohamed, A., 2017. "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 834-854.
    15. Zhao, Xiaowei & Cai, Yishan & Yang, Lin & Deng, Zhongwei & Qiang, Jiaxi, 2017. "State of charge estimation based on a new dual-polarization-resistance model for electric vehicles," Energy, Elsevier, vol. 135(C), pages 40-52.
    16. Zhong, Liang & Zhang, Chenbin & He, Yao & Chen, Zonghai, 2014. "A method for the estimation of the battery pack state of charge based on in-pack cells uniformity analysis," Applied Energy, Elsevier, vol. 113(C), pages 558-564.
    17. Shen, Yanqing, 2018. "Improved chaos genetic algorithm based state of charge determination for lithium batteries in electric vehicles," Energy, Elsevier, vol. 152(C), pages 576-585.
    18. Bizhong Xia & Zheng Zhang & Zizhou Lao & Wei Wang & Wei Sun & Yongzhi Lai & Mingwang Wang, 2018. "Strong Tracking of a H-Infinity Filter in Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 11(6), pages 1-20, June.
    19. Xia, Bizhong & Chen, Chaoren & Tian, Yong & Wang, Mingwang & Sun, Wei & Xu, Zhihui, 2015. "State of charge estimation of lithium-ion batteries based on an improved parameter identification method," Energy, Elsevier, vol. 90(P2), pages 1426-1434.
    20. Wang, Yujie & Chen, Zonghai, 2020. "A framework for state-of-charge and remaining discharge time prediction using unscented particle filter," Applied Energy, Elsevier, vol. 260(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1149-:d:106966. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.