IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i12p7412-d840956.html
   My bibliography  Save this article

A Comparative Study on Different Online State of Charge Estimation Algorithms for Lithium-Ion Batteries

Author

Listed:
  • Zeeshan Ahmad Khan

    (CARAID SE, Volkswagen AG, 85053 Ingolstadt, Germany)

  • Prashant Shrivastava

    (Centre for Automotive Research and Tribology (CART), Indian Institute of Technology Delhi, New Delhi 110016, India)

  • Syed Muhammad Amrr

    (Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi 110016, India)

  • Saad Mekhilef

    (Power Electronics and Renewable Energy Research Laboratory (PEARL), Department of Electrical Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
    School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, VIC 3122, Australia
    Center of Research Excellence in Renewable Energy, and Power Systems, King Abdulaziz University, Jeddah 21589, Saudi Arabia)

  • Abdullah A. Algethami

    (Department of Mechanical Engineering, College of Engineering, Taif University, Taif 21944, Saudi Arabia)

  • Mehdi Seyedmahmoudian

    (School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, VIC 3122, Australia)

  • Alex Stojcevski

    (School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, VIC 3122, Australia)

Abstract

With an accurate state of charge (SOC) estimation, lithium-ion batteries (LIBs) can be protected from overcharge, deep discharge, and thermal runaway. However, selecting appropriate algorithms to maintain the trade-off between accuracy and computational efficiency is challenging, especially under dynamic load profiles such as electric vehicles. In this study, seven different widely utilized online SOC estimation algorithms were considered with the following goals: (a) to compare the accuracy of the different algorithms; (b) to compare the computational time in the simulation. Since the 2-RC battery model is highly accurate and not very computationally complex, it was selected for implementing the considered algorithms for the model-based SOC estimation. The considered online SOC estimation performance was evaluated using measurement data obtained from experimental tests on commercial lithium manganese cobalt oxide batteries. The experimental analysis consisted of a dynamic current profile comprising a worldwide harmonized light vehicle test procedure (WLTP) cycle and constant current discharging pulses. In addition, the performance of the considered different algorithms was compared in terms of estimation error and computational time to understand the challenges of each algorithm. The results indicated that the extended Kalman filter (EKF) and sliding mode observer (SMO) were the best choices because of their estimation accuracy and computation time. However, achieving the SOC estimation accuracy depended on the battery modeling. On the other hand, the estimated SOC root means square error (RMSE) using a backpropagation neural network (BPNN) was less than that using a Luenberger observer (LO). Moreover, with the advantages of BPNNs, such as no need for battery modeling, the estimation error could be further reduced using a large size dataset.

Suggested Citation

  • Zeeshan Ahmad Khan & Prashant Shrivastava & Syed Muhammad Amrr & Saad Mekhilef & Abdullah A. Algethami & Mehdi Seyedmahmoudian & Alex Stojcevski, 2022. "A Comparative Study on Different Online State of Charge Estimation Algorithms for Lithium-Ion Batteries," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7412-:d:840956
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/12/7412/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/12/7412/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bizhong Xia & Zhen Sun & Ruifeng Zhang & Deyu Cui & Zizhou Lao & Wei Wang & Wei Sun & Yongzhi Lai & Mingwang Wang, 2017. "A Comparative Study of Three Improved Algorithms Based on Particle Filter Algorithms in SOC Estimation of Lithium Ion Batteries," Energies, MDPI, vol. 10(8), pages 1-14, August.
    2. Amara, Sihem & Toumi, Sana & Salah, Chokri Ben & Saidi, Abdelaziz Salah, 2021. "Improvement of techno-economic optimal sizing of a hybrid off-grid micro-grid system," Energy, Elsevier, vol. 233(C).
    3. Shrivastava, Prashant & Soon, Tey Kok & Idris, Mohd Yamani Idna Bin & Mekhilef, Saad, 2019. "Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    4. Hongwen He & Rui Xiong & Jinxin Fan, 2011. "Evaluation of Lithium-Ion Battery Equivalent Circuit Models for State of Charge Estimation by an Experimental Approach," Energies, MDPI, vol. 4(4), pages 1-17, March.
    5. Ruifeng Zhang & Bizhong Xia & Baohua Li & Libo Cao & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang, 2018. "State of the Art of Lithium-Ion Battery SOC Estimation for Electrical Vehicles," Energies, MDPI, vol. 11(7), pages 1-36, July.
    6. Xia, Bizhong & Chen, Chaoren & Tian, Yong & Wang, Mingwang & Sun, Wei & Xu, Zhihui, 2015. "State of charge estimation of lithium-ion batteries based on an improved parameter identification method," Energy, Elsevier, vol. 90(P2), pages 1426-1434.
    7. Dong, Guangzhong & Zhang, Xu & Zhang, Chenbin & Chen, Zonghai, 2015. "A method for state of energy estimation of lithium-ion batteries based on neural network model," Energy, Elsevier, vol. 90(P1), pages 879-888.
    8. Xiangdong Sun & Jingrun Ji & Biying Ren & Chenxue Xie & Dan Yan, 2019. "Adaptive Forgetting Factor Recursive Least Square Algorithm for Online Identification of Equivalent Circuit Model Parameters of a Lithium-Ion Battery," Energies, MDPI, vol. 12(12), pages 1-15, June.
    9. Jie Xing & Peng Wu, 2021. "State of Charge Estimation of Lithium-Ion Battery Based on Improved Adaptive Unscented Kalman Filter," Sustainability, MDPI, vol. 13(9), pages 1-16, April.
    10. Zhibing Zeng & Jindong Tian & Dong Li & Yong Tian, 2018. "An Online State of Charge Estimation Algorithm for Lithium-Ion Batteries Using an Improved Adaptive Cubature Kalman Filter," Energies, MDPI, vol. 11(1), pages 1-16, January.
    11. Ye, Min & Guo, Hui & Cao, Binggang, 2017. "A model-based adaptive state of charge estimator for a lithium-ion battery using an improved adaptive particle filter," Applied Energy, Elsevier, vol. 190(C), pages 740-748.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bastida, Hector & De la Cruz-Loredo, Ivan & Ugalde-Loo, Carlos E., 2023. "Effective estimation of the state-of-charge of latent heat thermal energy storage for heating and cooling systems using non-linear state observers," Applied Energy, Elsevier, vol. 331(C).
    2. Carla Menale & Francesco Vitiello & Antonio Nicolò Mancino & Antonio Scotini & Livia Della Seta & Francesco Vellucci & Roberto Bubbico, 2024. "Performance of Protection Devices Integrated into Lithium-Ion Cells during Overcharge Abuse Test," Energies, MDPI, vol. 17(19), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wenxian Duan & Chuanxue Song & Silun Peng & Feng Xiao & Yulong Shao & Shixin Song, 2020. "An Improved Gated Recurrent Unit Network Model for State-of-Charge Estimation of Lithium-Ion Battery," Energies, MDPI, vol. 13(23), pages 1-19, December.
    2. Theodoros Kalogiannis & Md Sazzad Hosen & Mohsen Akbarzadeh Sokkeh & Shovon Goutam & Joris Jaguemont & Lu Jin & Geng Qiao & Maitane Berecibar & Joeri Van Mierlo, 2019. "Comparative Study on Parameter Identification Methods for Dual-Polarization Lithium-Ion Equivalent Circuit Model," Energies, MDPI, vol. 12(21), pages 1-35, October.
    3. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    4. Maheshwari, A. & Nageswari, S., 2022. "Real-time state of charge estimation for electric vehicle power batteries using optimized filter," Energy, Elsevier, vol. 254(PB).
    5. Fotouhi, Abbas & Auger, Daniel J. & Propp, Karsten & Longo, Stefano & Wild, Mark, 2016. "A review on electric vehicle battery modelling: From Lithium-ion toward Lithium–Sulphur," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1008-1021.
    6. Ruifeng Zhang & Bizhong Xia & Baohua Li & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang & Mingwang Wang, 2018. "Study on the Characteristics of a High Capacity Nickel Manganese Cobalt Oxide (NMC) Lithium-Ion Battery—An Experimental Investigation," Energies, MDPI, vol. 11(9), pages 1-20, August.
    7. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    8. Firouz, Y. & Relan, R. & Timmermans, J.M. & Omar, N. & Van den Bossche, P. & Van Mierlo, J., 2016. "Advanced lithium ion battery modeling and nonlinear analysis based on robust method in frequency domain: Nonlinear characterization and non-parametric modeling," Energy, Elsevier, vol. 106(C), pages 602-617.
    9. Farmann, Alexander & Waag, Wladislaw & Sauer, Dirk Uwe, 2016. "Application-specific electrical characterization of high power batteries with lithium titanate anodes for electric vehicles," Energy, Elsevier, vol. 112(C), pages 294-306.
    10. Cheng, Yujie & Song, Dengwei & Wang, Zhenya & Lu, Chen & Zerhouni, Noureddine, 2020. "An ensemble prognostic method for lithium-ion battery capacity estimation based on time-varying weight allocation," Applied Energy, Elsevier, vol. 266(C).
    11. Van Quan Dao & Minh-Chau Dinh & Chang Soon Kim & Minwon Park & Chil-Hoon Doh & Jeong Hyo Bae & Myung-Kwan Lee & Jianyong Liu & Zhiguo Bai, 2021. "Design of an Effective State of Charge Estimation Method for a Lithium-Ion Battery Pack Using Extended Kalman Filter and Artificial Neural Network," Energies, MDPI, vol. 14(9), pages 1-20, May.
    12. Shrivastava, Prashant & Soon, Tey Kok & Idris, Mohd Yamani Idna Bin & Mekhilef, Saad, 2019. "Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    13. Jiang, Cong & Wang, Shunli & Wu, Bin & Fernandez, Carlos & Xiong, Xin & Coffie-Ken, James, 2021. "A state-of-charge estimation method of the power lithium-ion battery in complex conditions based on adaptive square root extended Kalman filter," Energy, Elsevier, vol. 219(C).
    14. Meng, Jinhao & Cai, Lei & Stroe, Daniel-Ioan & Luo, Guangzhao & Sui, Xin & Teodorescu, Remus, 2019. "Lithium-ion battery state-of-health estimation in electric vehicle using optimized partial charging voltage profiles," Energy, Elsevier, vol. 185(C), pages 1054-1062.
    15. Li, Yanwen & Wang, Chao & Gong, Jinfeng, 2017. "A multi-model probability SOC fusion estimation approach using an improved adaptive unscented Kalman filter technique," Energy, Elsevier, vol. 141(C), pages 1402-1415.
    16. Tian, Yong & Lai, Rucong & Li, Xiaoyu & Xiang, Lijuan & Tian, Jindong, 2020. "A combined method for state-of-charge estimation for lithium-ion batteries using a long short-term memory network and an adaptive cubature Kalman filter," Applied Energy, Elsevier, vol. 265(C).
    17. Yujie Cheng & Laifa Tao & Chao Yang, 2017. "Lithium-Ion Battery Capacity Estimation: A Method Based on Visual Cognition," Complexity, Hindawi, vol. 2017, pages 1-13, December.
    18. Qian, Cheng & Guan, Hongsheng & Xu, Binghui & Xia, Quan & Sun, Bo & Ren, Yi & Wang, Zili, 2024. "A CNN-SAM-LSTM hybrid neural network for multi-state estimation of lithium-ion batteries under dynamical operating conditions," Energy, Elsevier, vol. 294(C).
    19. Lai, Xin & Huang, Yunfeng & Gu, Huanghui & Han, Xuebing & Feng, Xuning & Dai, Haifeng & Zheng, Yuejiu & Ouyang, Minggao, 2022. "Remaining discharge energy estimation for lithium-ion batteries based on future load prediction considering temperature and ageing effects," Energy, Elsevier, vol. 238(PA).
    20. Ning, Bo & Cao, Binggang & Wang, Bin & Zou, Zhongyue, 2018. "Adaptive sliding mode observers for lithium-ion battery state estimation based on parameters identified online," Energy, Elsevier, vol. 153(C), pages 732-742.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7412-:d:840956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.