IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2017i1p3-d123818.html
   My bibliography  Save this article

Online Parameter Identification and State of Charge Estimation of Lithium-Ion Batteries Based on Forgetting Factor Recursive Least Squares and Nonlinear Kalman Filter

Author

Listed:
  • Bizhong Xia

    (Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China)

  • Zizhou Lao

    (Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China)

  • Ruifeng Zhang

    (Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
    Sunwoda Electronic Co., Ltd., Shenzhen 518108, China)

  • Yong Tian

    (Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China)

  • Guanghao Chen

    (Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China)

  • Zhen Sun

    (Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China)

  • Wei Wang

    (Sunwoda Electronic Co., Ltd., Shenzhen 518108, China)

  • Wei Sun

    (Sunwoda Electronic Co., Ltd., Shenzhen 518108, China)

  • Yongzhi Lai

    (Sunwoda Electronic Co., Ltd., Shenzhen 518108, China)

  • Mingwang Wang

    (Sunwoda Electronic Co., Ltd., Shenzhen 518108, China)

  • Huawen Wang

    (Sunwoda Electronic Co., Ltd., Shenzhen 518108, China)

Abstract

State of charge (SOC) estimation is the core of any battery management system. Most closed-loop SOC estimation algorithms are based on the equivalent circuit model with fixed parameters. However, the parameters of the equivalent circuit model will change as temperature or SOC changes, resulting in reduced SOC estimation accuracy. In this paper, two SOC estimation algorithms with online parameter identification are proposed to solve this problem based on forgetting factor recursive least squares (FFRLS) and nonlinear Kalman filter. The parameters of a Thevenin model are constantly updated by FFRLS. The nonlinear Kalman filter is used to perform the recursive operation to estimate SOC. Experiments in variable temperature environments verify the effectiveness of the proposed algorithms. A combination of four driving cycles is loaded on lithium-ion batteries to test the adaptability of the approaches to different working conditions. Under certain conditions, the average error of the SOC estimation dropped from 5.6% to 1.1% after adding the online parameters identification, showing that the estimation accuracy of proposed algorithms is greatly improved. Besides, simulated measurement noise is added to the test data to prove the robustness of the algorithms.

Suggested Citation

  • Bizhong Xia & Zizhou Lao & Ruifeng Zhang & Yong Tian & Guanghao Chen & Zhen Sun & Wei Wang & Wei Sun & Yongzhi Lai & Mingwang Wang & Huawen Wang, 2017. "Online Parameter Identification and State of Charge Estimation of Lithium-Ion Batteries Based on Forgetting Factor Recursive Least Squares and Nonlinear Kalman Filter," Energies, MDPI, vol. 11(1), pages 1-23, December.
  • Handle: RePEc:gam:jeners:v:11:y:2017:i:1:p:3-:d:123818
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/1/3/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/1/3/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chuanxue Song & Yulong Shao & Shixin Song & Silun Peng & Fang Zhou & Cheng Chang & Da Wang, 2017. "Insulation Resistance Monitoring Algorithm for Battery Pack in Electric Vehicle Based on Extended Kalman Filtering," Energies, MDPI, vol. 10(5), pages 1-13, May.
    2. Hannan, M.A. & Lipu, M.S.H. & Hussain, A. & Mohamed, A., 2017. "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 834-854.
    3. Bizhong Xia & Zhen Sun & Ruifeng Zhang & Zizhou Lao, 2017. "A Cubature Particle Filter Algorithm to Estimate the State of the Charge of Lithium-Ion Batteries Based on a Second-Order Equivalent Circuit Model," Energies, MDPI, vol. 10(4), pages 1-15, April.
    4. Zhiwei He & Mingyu Gao & Caisheng Wang & Leyi Wang & Yuanyuan Liu, 2013. "Adaptive State of Charge Estimation for Li-Ion Batteries Based on an Unscented Kalman Filter with an Enhanced Battery Model," Energies, MDPI, vol. 6(8), pages 1-18, August.
    5. Li, Yanwen & Wang, Chao & Gong, Jinfeng, 2016. "A combination Kalman filter approach for State of Charge estimation of lithium-ion battery considering model uncertainty," Energy, Elsevier, vol. 109(C), pages 933-946.
    6. Hoque, M.M. & Hannan, M.A. & Mohamed, A. & Ayob, A., 2017. "Battery charge equalization controller in electric vehicle applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1363-1385.
    7. Xiaosong Hu & Fengchun Sun & Yuan Zou, 2010. "Estimation of State of Charge of a Lithium-Ion Battery Pack for Electric Vehicles Using an Adaptive Luenberger Observer," Energies, MDPI, vol. 3(9), pages 1-18, September.
    8. Hongwen He & Rui Xiong & Jinxin Fan, 2011. "Evaluation of Lithium-Ion Battery Equivalent Circuit Models for State of Charge Estimation by an Experimental Approach," Energies, MDPI, vol. 4(4), pages 1-17, March.
    9. Xiangwei Guo & Longyun Kang & Yuan Yao & Zhizhen Huang & Wenbiao Li, 2016. "Joint Estimation of the Electric Vehicle Power Battery State of Charge Based on the Least Squares Method and the Kalman Filter Algorithm," Energies, MDPI, vol. 9(2), pages 1-16, February.
    10. Wei, Zhongbao & Lim, Tuti Mariana & Skyllas-Kazacos, Maria & Wai, Nyunt & Tseng, King Jet, 2016. "Online state of charge and model parameter co-estimation based on a novel multi-timescale estimator for vanadium redox flow battery," Applied Energy, Elsevier, vol. 172(C), pages 169-179.
    11. Sun, Fengchun & Hu, Xiaosong & Zou, Yuan & Li, Siguang, 2011. "Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles," Energy, Elsevier, vol. 36(5), pages 3531-3540.
    12. Shangfeng Han & Baosheng Zhang & Xiaoyang Sun & Song Han & Mikael Höök, 2017. "China’s Energy Transition in the Power and Transport Sectors from a Substitution Perspective," Energies, MDPI, vol. 10(5), pages 1-25, April.
    13. Bizhong Xia & Haiqing Wang & Yong Tian & Mingwang Wang & Wei Sun & Zhihui Xu, 2015. "State of Charge Estimation of Lithium-Ion Batteries Using an Adaptive Cubature Kalman Filter," Energies, MDPI, vol. 8(6), pages 1-21, June.
    14. Cuma, Mehmet Ugras & Koroglu, Tahsin, 2015. "A comprehensive review on estimation strategies used in hybrid and battery electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 517-531.
    15. Ng, Kong Soon & Moo, Chin-Sien & Chen, Yi-Ping & Hsieh, Yao-Ching, 2009. "Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries," Applied Energy, Elsevier, vol. 86(9), pages 1506-1511, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Richard Bustos & Stephen Andrew Gadsden & Pawel Malysz & Mohammad Al-Shabi & Shohel Mahmud, 2022. "Health Monitoring of Lithium-Ion Batteries Using Dual Filters," Energies, MDPI, vol. 15(6), pages 1-16, March.
    2. Deng Ma & Kai Gao & Yutao Mu & Ziqi Wei & Ronghua Du, 2022. "An Adaptive Tracking-Extended Kalman Filter for SOC Estimation of Batteries with Model Uncertainty and Sensor Error," Energies, MDPI, vol. 15(10), pages 1-18, May.
    3. Zhongbao Wei & Feng Leng & Zhongjie He & Wenyu Zhang & Kaiyuan Li, 2018. "Online State of Charge and State of Health Estimation for a Lithium-Ion Battery Based on a Data–Model Fusion Method," Energies, MDPI, vol. 11(7), pages 1-16, July.
    4. Zizhou Lao & Bizhong Xia & Wei Wang & Wei Sun & Yongzhi Lai & Mingwang Wang, 2018. "A Novel Method for Lithium-Ion Battery Online Parameter Identification Based on Variable Forgetting Factor Recursive Least Squares," Energies, MDPI, vol. 11(6), pages 1-15, May.
    5. Zhengyi Bao & Jiahao Jiang & Chunxiang Zhu & Mingyu Gao, 2022. "A New Hybrid Neural Network Method for State-of-Health Estimation of Lithium-Ion Battery," Energies, MDPI, vol. 15(12), pages 1-16, June.
    6. Zeyan Lv & Yanghong Xia & Junwei Chai & Miao Yu & Wei Wei, 2018. "Distributed Coordination Control Based on State-of-Charge for Bidirectional Power Converters in a Hybrid AC/DC Microgrid," Energies, MDPI, vol. 11(4), pages 1-15, April.
    7. Damoon Soudbakhsh & Mehdi Gilaki & William Lynch & Peilin Zhang & Taeyoung Choi & Elham Sahraei, 2020. "Electrical Response of Mechanically Damaged Lithium-Ion Batteries," Energies, MDPI, vol. 13(17), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zizhou Lao & Bizhong Xia & Wei Wang & Wei Sun & Yongzhi Lai & Mingwang Wang, 2018. "A Novel Method for Lithium-Ion Battery Online Parameter Identification Based on Variable Forgetting Factor Recursive Least Squares," Energies, MDPI, vol. 11(6), pages 1-15, May.
    2. Bizhong Xia & Wenhui Zheng & Ruifeng Zhang & Zizhou Lao & Zhen Sun, 2017. "A Novel Observer for Lithium-Ion Battery State of Charge Estimation in Electric Vehicles Based on a Second-Order Equivalent Circuit Model," Energies, MDPI, vol. 10(8), pages 1-20, August.
    3. Woo-Yong Kim & Pyeong-Yeon Lee & Jonghoon Kim & Kyung-Soo Kim, 2019. "A Nonlinear-Model-Based Observer for a State-of-Charge Estimation of a Lithium-Ion Battery in Electric Vehicles," Energies, MDPI, vol. 12(17), pages 1-20, September.
    4. Shrivastava, Prashant & Soon, Tey Kok & Idris, Mohd Yamani Idna Bin & Mekhilef, Saad, 2019. "Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    5. Turksoy, Arzu & Teke, Ahmet & Alkaya, Alkan, 2020. "A comprehensive overview of the dc-dc converter-based battery charge balancing methods in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    6. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    7. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    8. Ingvild B. Espedal & Asanthi Jinasena & Odne S. Burheim & Jacob J. Lamb, 2021. "Current Trends for State-of-Charge (SoC) Estimation in Lithium-Ion Battery Electric Vehicles," Energies, MDPI, vol. 14(11), pages 1-24, June.
    9. Guo, Feng & Hu, Guangdi & Xiang, Shun & Zhou, Pengkai & Hong, Ru & Xiong, Neng, 2019. "A multi-scale parameter adaptive method for state of charge and parameter estimation of lithium-ion batteries using dual Kalman filters," Energy, Elsevier, vol. 178(C), pages 79-88.
    10. Li, Xiaoyu & Wang, Zhenpo & Zhang, Lei, 2019. "Co-estimation of capacity and state-of-charge for lithium-ion batteries in electric vehicles," Energy, Elsevier, vol. 174(C), pages 33-44.
    11. Bizhong Xia & Zhen Sun & Ruifeng Zhang & Deyu Cui & Zizhou Lao & Wei Wang & Wei Sun & Yongzhi Lai & Mingwang Wang, 2017. "A Comparative Study of Three Improved Algorithms Based on Particle Filter Algorithms in SOC Estimation of Lithium Ion Batteries," Energies, MDPI, vol. 10(8), pages 1-14, August.
    12. Xia, Bizhong & Cui, Deyu & Sun, Zhen & Lao, Zizhou & Zhang, Ruifeng & Wang, Wei & Sun, Wei & Lai, Yongzhi & Wang, Mingwang, 2018. "State of charge estimation of lithium-ion batteries using optimized Levenberg-Marquardt wavelet neural network," Energy, Elsevier, vol. 153(C), pages 694-705.
    13. Li, Yanwen & Wang, Chao & Gong, Jinfeng, 2017. "A multi-model probability SOC fusion estimation approach using an improved adaptive unscented Kalman filter technique," Energy, Elsevier, vol. 141(C), pages 1402-1415.
    14. Tian, Yong & Lai, Rucong & Li, Xiaoyu & Xiang, Lijuan & Tian, Jindong, 2020. "A combined method for state-of-charge estimation for lithium-ion batteries using a long short-term memory network and an adaptive cubature Kalman filter," Applied Energy, Elsevier, vol. 265(C).
    15. Ruifeng Zhang & Bizhong Xia & Baohua Li & Libo Cao & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang, 2018. "State of the Art of Lithium-Ion Battery SOC Estimation for Electrical Vehicles," Energies, MDPI, vol. 11(7), pages 1-36, July.
    16. Bizhong Xia & Rui Huang & Zizhou Lao & Ruifeng Zhang & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang & Mingwang Wang, 2018. "Online Parameter Identification of Lithium-Ion Batteries Using a Novel Multiple Forgetting Factor Recursive Least Square Algorithm," Energies, MDPI, vol. 11(11), pages 1-19, November.
    17. Jinqing Linghu & Longyun Kang & Ming Liu & Bihua Hu & Zefeng Wang, 2019. "An Improved Model Equation Based on a Gaussian Function Trinomial for State of Charge Estimation of Lithium-ion Batteries," Energies, MDPI, vol. 12(7), pages 1-15, April.
    18. Jong-Hyun Lee & In-Soo Lee, 2021. "Lithium Battery SOH Monitoring and an SOC Estimation Algorithm Based on the SOH Result," Energies, MDPI, vol. 14(15), pages 1-16, July.
    19. Bizhong Xia & Haiqing Wang & Yong Tian & Mingwang Wang & Wei Sun & Zhihui Xu, 2015. "State of Charge Estimation of Lithium-Ion Batteries Using an Adaptive Cubature Kalman Filter," Energies, MDPI, vol. 8(6), pages 1-21, June.
    20. Bizhong Xia & Shengkun Guo & Wei Wang & Yongzhi Lai & Huawen Wang & Mingwang Wang & Weiwei Zheng, 2018. "A State of Charge Estimation Method Based on Adaptive Extended Kalman-Particle Filtering for Lithium-ion Batteries," Energies, MDPI, vol. 11(10), pages 1-15, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2017:i:1:p:3-:d:123818. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.