IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v158y2022ics1364032122000946.html
   My bibliography  Save this article

Recent advances in the modeling of fundamental processes in liquid metal batteries

Author

Listed:
  • Agarwal, Daksh
  • Potnuru, Rakesh
  • Kaushik, Chiranjeev
  • Darla, Vinay Rajesh
  • Kulkarni, Kaustubh
  • Garg, Ashish
  • Gupta, Raju Kumar
  • Tiwari, Naveen
  • Nalwa, Kanwar Singh

Abstract

Liquid Metal Batteries (LMBs) have a potential to emerge as a cost-effective solution for grid-scale energy storage to overcome the intermittency of renewable energy generation and to facilitate the management of peak loading requirements. They have significant advantages over other battery types such as high-power density and cyclability, use of earth-abundant materials, self-healing capability, high coulombic efficiency, and ease of scalability. The successful adoption of LMBs for grid storage requires a thorough understanding of the underlying processes that govern the performance of LMBs to prevent any detrimental effects at higher storage capacities. However, most of the research work in this relatively new field has focused on developing new electrode materials to achieve higher performance and lower operating temperature. In this review, we focus on other critical aspects such as heat and mass transfer, electric potential, instabilities, high temperature sealing and state of charge, which are vital to the functioning of LMBs. The models that have been developed to study these processes and attributes of LMBs, and their learning advancements have been summarized. Moreover, the challenges and outlook of research on modeling of LMBs are presented which are expected to significantly contribute to the development of a comprehensive model combining these effects that will offer insights into optimization of design and operating conditions of LMBs resulting in accelerated scaling and commercialization.

Suggested Citation

  • Agarwal, Daksh & Potnuru, Rakesh & Kaushik, Chiranjeev & Darla, Vinay Rajesh & Kulkarni, Kaustubh & Garg, Ashish & Gupta, Raju Kumar & Tiwari, Naveen & Nalwa, Kanwar Singh, 2022. "Recent advances in the modeling of fundamental processes in liquid metal batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
  • Handle: RePEc:eee:rensus:v:158:y:2022:i:c:s1364032122000946
    DOI: 10.1016/j.rser.2022.112167
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122000946
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112167?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huayi Yin & Brice Chung & Fei Chen & Takanari Ouchi & Ji Zhao & Nobuyuki Tanaka & Donald R. Sadoway, 2018. "Faradaically selective membrane for liquid metal displacement batteries," Nature Energy, Nature, vol. 3(2), pages 127-131, February.
    2. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    3. Yang Jin & Kai Liu & Jialiang Lang & Denys Zhuo & Zeya Huang & Chang-an Wang & Hui Wu & Yi Cui, 2018. "An intermediate temperature garnet-type solid electrolyte-based molten lithium battery for grid energy storage," Nature Energy, Nature, vol. 3(9), pages 732-738, September.
    4. Ismail, M.S. & Ingham, D.B. & Hughes, K.J. & Ma, L. & Pourkashanian, M., 2014. "An efficient mathematical model for air-breathing PEM fuel cells," Applied Energy, Elsevier, vol. 135(C), pages 490-503.
    5. Xiaosong Hu & Fengchun Sun & Yuan Zou, 2010. "Estimation of State of Charge of a Lithium-Ion Battery Pack for Electric Vehicles Using an Adaptive Luenberger Observer," Energies, MDPI, vol. 3(9), pages 1-18, September.
    6. Basu, Suman & Hariharan, Krishnan S. & Kolake, Subramanya Mayya & Song, Taewon & Sohn, Dong Kee & Yeo, Taejung, 2016. "Coupled electrochemical thermal modelling of a novel Li-ion battery pack thermal management system," Applied Energy, Elsevier, vol. 181(C), pages 1-13.
    7. Hussain, Akhtar & Arif, Syed Muhammad & Aslam, Muhammad, 2017. "Emerging renewable and sustainable energy technologies: State of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 12-28.
    8. Yue, Meiling & Lambert, Hugo & Pahon, Elodie & Roche, Robin & Jemei, Samir & Hissel, Daniel, 2021. "Hydrogen energy systems: A critical review of technologies, applications, trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    9. Liu, Xingtao & Chen, Zonghai & Zhang, Chenbin & Wu, Ji, 2014. "A novel temperature-compensated model for power Li-ion batteries with dual-particle-filter state of charge estimation," Applied Energy, Elsevier, vol. 123(C), pages 263-272.
    10. Daehyun Kim & Keunhwi Koo & Jae Jin Jeong & Taedong Goh & Sang Woo Kim, 2013. "Second-Order Discrete-Time Sliding Mode Observer for State of Charge Determination Based on a Dynamic Resistance Li-Ion Battery Model," Energies, MDPI, vol. 6(10), pages 1-14, October.
    11. Pan, Haihong & Lü, Zhiqiang & Lin, Weilong & Li, Junzi & Chen, Lin, 2017. "State of charge estimation of lithium-ion batteries using a grey extended Kalman filter and a novel open-circuit voltage model," Energy, Elsevier, vol. 138(C), pages 764-775.
    12. Liu, Guoan & Xu, Cheng & Li, Haomiao & Jiang, Kai & Wang, Kangli, 2019. "State of charge and online model parameters co-estimation for liquid metal batteries," Applied Energy, Elsevier, vol. 250(C), pages 677-684.
    13. Richard Van Noorden, 2014. "The rechargeable revolution: A better battery," Nature, Nature, vol. 507(7490), pages 26-28, March.
    14. Lim, KaiChin & Bastawrous, Hany Ayad & Duong, Van-Huan & See, Khay Wai & Zhang, Peng & Dou, Shi Xue, 2016. "Fading Kalman filter-based real-time state of charge estimation in LiFePO4 battery-powered electric vehicles," Applied Energy, Elsevier, vol. 169(C), pages 40-48.
    15. Kangli Wang & Kai Jiang & Brice Chung & Takanari Ouchi & Paul J. Burke & Dane A. Boysen & David J. Bradwell & Hojong Kim & Ulrich Muecke & Donald R. Sadoway, 2014. "Lithium–antimony–lead liquid metal battery for grid-level energy storage," Nature, Nature, vol. 514(7522), pages 348-350, October.
    16. Xiaopeng Tang & Boyang Liu & Furong Gao & Zhou Lv, 2016. "State-of-Charge Estimation for Li-Ion Power Batteries Based on a Tuning Free Observer," Energies, MDPI, vol. 9(9), pages 1-12, August.
    17. Bizhong Xia & Zhen Sun & Ruifeng Zhang & Deyu Cui & Zizhou Lao & Wei Wang & Wei Sun & Yongzhi Lai & Mingwang Wang, 2017. "A Comparative Study of Three Improved Algorithms Based on Particle Filter Algorithms in SOC Estimation of Lithium Ion Batteries," Energies, MDPI, vol. 10(8), pages 1-14, August.
    18. Xian Wang & Zhengxiang Song & Kun Yang & Xuyang Yin & Yingsan Geng & Jianhua Wang, 2019. "State of Charge Estimation for Lithium-Bismuth Liquid Metal Batteries," Energies, MDPI, vol. 12(1), pages 1-22, January.
    19. Zhao, Rui & Liu, Jie & Gu, Junjie, 2015. "The effects of electrode thickness on the electrochemical and thermal characteristics of lithium ion battery," Applied Energy, Elsevier, vol. 139(C), pages 220-229.
    20. Ye, Min & Guo, Hui & Xiong, Rui & Yu, Quanqing, 2018. "A double-scale and adaptive particle filter-based online parameter and state of charge estimation method for lithium-ion batteries," Energy, Elsevier, vol. 144(C), pages 789-799.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Yuekuan, 2024. "AI-driven battery ageing prediction with distributed renewable community and E-mobility energy sharing," Renewable Energy, Elsevier, vol. 225(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Ingvild B. Espedal & Asanthi Jinasena & Odne S. Burheim & Jacob J. Lamb, 2021. "Current Trends for State-of-Charge (SoC) Estimation in Lithium-Ion Battery Electric Vehicles," Energies, MDPI, vol. 14(11), pages 1-24, June.
    3. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    4. Xian Wang & Zhengxiang Song & Kun Yang & Xuyang Yin & Yingsan Geng & Jianhua Wang, 2019. "State of Charge Estimation for Lithium-Bismuth Liquid Metal Batteries," Energies, MDPI, vol. 12(1), pages 1-22, January.
    5. Ruifeng Zhang & Bizhong Xia & Baohua Li & Libo Cao & Yongzhi Lai & Weiwei Zheng & Huawen Wang & Wei Wang, 2018. "State of the Art of Lithium-Ion Battery SOC Estimation for Electrical Vehicles," Energies, MDPI, vol. 11(7), pages 1-36, July.
    6. Bizhong Xia & Wenhui Zheng & Ruifeng Zhang & Zizhou Lao & Zhen Sun, 2017. "A Novel Observer for Lithium-Ion Battery State of Charge Estimation in Electric Vehicles Based on a Second-Order Equivalent Circuit Model," Energies, MDPI, vol. 10(8), pages 1-20, August.
    7. Tang, Xiaopeng & Liu, Boyang & Lv, Zhou & Gao, Furong, 2017. "Observer based battery SOC estimation: Using multi-gain-switching approach," Applied Energy, Elsevier, vol. 204(C), pages 1275-1283.
    8. Liu, Guoan & Xu, Cheng & Li, Haomiao & Jiang, Kai & Wang, Kangli, 2019. "State of charge and online model parameters co-estimation for liquid metal batteries," Applied Energy, Elsevier, vol. 250(C), pages 677-684.
    9. Xu, Cheng & Zhang, E & Jiang, Kai & Wang, Kangli, 2022. "Dual fuzzy-based adaptive extended Kalman filter for state of charge estimation of liquid metal battery," Applied Energy, Elsevier, vol. 327(C).
    10. Wang, Shun-Li & Fernandez, Carlos & Zou, Chuan-Yun & Yu, Chun-Mei & Chen, Lei & Zhang, Li, 2019. "A comprehensive working state monitoring method for power battery packs considering state of balance and aging correction," Energy, Elsevier, vol. 171(C), pages 444-455.
    11. Xiaopeng Tang & Ke Yao & Boyang Liu & Wengui Hu & Furong Gao, 2018. "Long-Term Battery Voltage, Power, and Surface Temperature Prediction Using a Model-Based Extreme Learning Machine," Energies, MDPI, vol. 11(1), pages 1-16, January.
    12. Qiao Zhu & Neng Xiong & Ming-Liang Yang & Rui-Sen Huang & Guang-Di Hu, 2017. "State of Charge Estimation for Lithium-Ion Battery Based on Nonlinear Observer: An H ∞ Method," Energies, MDPI, vol. 10(5), pages 1-19, May.
    13. Wei, Zhongbao & Zhao, Jiyun & Ji, Dongxu & Tseng, King Jet, 2017. "A multi-timescale estimator for battery state of charge and capacity dual estimation based on an online identified model," Applied Energy, Elsevier, vol. 204(C), pages 1264-1274.
    14. Renxin, Xiao & Yi, Yang & Xianguang, Jia & Nan, Pan, 2023. "Collaborative estimations of state of energy and maximum available energy of lithium-ion batteries with optimized time windows considering instantaneous energy efficiencies," Energy, Elsevier, vol. 274(C).
    15. Jiang, Cong & Wang, Shunli & Wu, Bin & Fernandez, Carlos & Xiong, Xin & Coffie-Ken, James, 2021. "A state-of-charge estimation method of the power lithium-ion battery in complex conditions based on adaptive square root extended Kalman filter," Energy, Elsevier, vol. 219(C).
    16. Rajib Mahamud & Chanwoo Park, 2022. "Theory and Practices of Li-Ion Battery Thermal Management for Electric and Hybrid Electric Vehicles," Energies, MDPI, vol. 15(11), pages 1-45, May.
    17. Woo-Yong Kim & Pyeong-Yeon Lee & Jonghoon Kim & Kyung-Soo Kim, 2019. "A Nonlinear-Model-Based Observer for a State-of-Charge Estimation of a Lithium-Ion Battery in Electric Vehicles," Energies, MDPI, vol. 12(17), pages 1-20, September.
    18. Victor Pizarro-Carmona & Marcelo Cortés-Carmona & Rodrigo Palma-Behnke & Williams Calderón-Muñoz & Marcos E. Orchard & Pablo A. Estévez, 2019. "An Optimized Impedance Model for the Estimation of the State-of-Charge of a Li-Ion Cell: The Case of a LiFePO 4 (ANR26650)," Energies, MDPI, vol. 12(4), pages 1-16, February.
    19. Simpson, J.G. & Hanrahan, G. & Loth, E. & Koenig, G.M. & Sadoway, D.R., 2021. "Liquid metal battery storage in an offshore wind turbine: Concept and economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    20. Tang, Xiaopeng & Gao, Furong & Zou, Changfu & Yao, Ke & Hu, Wengui & Wik, Torsten, 2019. "Load-responsive model switching estimation for state of charge of lithium-ion batteries," Applied Energy, Elsevier, vol. 238(C), pages 423-434.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:158:y:2022:i:c:s1364032122000946. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.