IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i10p3519-d813277.html
   My bibliography  Save this article

Fuzzy Algorithms for Diagnosis of Furnace Transformer Insulation Condition

Author

Listed:
  • Alexander S. Karandaev

    (Department of Information-Measuring Equipment, South Ural State University, 454080 Chelyabinsk, Russia)

  • Igor M. Yachikov

    (Department of Information-Measuring Equipment, South Ural State University, 454080 Chelyabinsk, Russia)

  • Andrey A. Radionov

    (Department of Automation and Control, Moscow Polytechnic University, 107023 Moscow, Russia)

  • Ivan V. Liubimov

    (Department of Electric Drive and Mechatronics, South Ural State University, 454080 Chelyabinsk, Russia)

  • Nikolay N. Druzhinin

    (Department of Electric Drive and Mechatronics, South Ural State University, 454080 Chelyabinsk, Russia)

  • Ekaterina A. Khramshina

    (Power Engineering and Automated Systems Institute, Nosov Magnitogorsk State Technical University, 455000 Magnitogorsk, Russia)

Abstract

Implementation of the smart transformer concept is critical for the deployment of IIoT-based smart grids. Top manufacturers of power electrics develop and adopt online monitoring systems. Such systems become part of high-voltage grid and unit transformers. However, furnace transformers are a broad category that this change does not affect yet. At the same time, adoption of diagnostic systems for furnace transformers is relevant because they are a heavy-duty application with no redundancy. Creating any such system requires a well-founded mathematical analysis of the facility’s condition, carefully selected diagnostic parameters, and setpoints thereof, which serve as the condition categories. The goal hereof was to create an expert system to detect insulation breach and its expansion as well as to evaluate the risk it poses to the system; the core mechanism is mathematical processing of trends in partial discharge ( PD ). We ran tests on a 26-MVA transformer installed on a ladle furnace at a steelworks facility. The transformer is equipped with a versatile condition monitoring system that continually measures apparent charge and PD intensity. The objective is to identify the condition of the transformer and label it with one of the generally recognized categories: Normal, Poor, Critical. The contribution of this paper consists of the first ever validation of a single generalized metric that describes the condition of transformer insulation based on the online monitoring of the PD parameters. Fuzzy logic algorithms are used in mathematical processing. The proposal is to generalize the set of diagnostic variables to a single deterministic parameter: insulation state indicator. The paper provides an example of calculating it from the apparent charge and PD power readings. To measure the indicativeness of individual parameters for predicting further development of a defect, the authors developed a method for testing the diagnostic sensitivity of these parameters to changes in the condition. The method was tested using trends in readings sampled whilst the status was degrading from Normal to Critical. The paper also shows a practical example of defect localization. The recommendation is to broadly use the method in expert systems for high-voltage equipment monitoring.

Suggested Citation

  • Alexander S. Karandaev & Igor M. Yachikov & Andrey A. Radionov & Ivan V. Liubimov & Nikolay N. Druzhinin & Ekaterina A. Khramshina, 2022. "Fuzzy Algorithms for Diagnosis of Furnace Transformer Insulation Condition," Energies, MDPI, vol. 15(10), pages 1-21, May.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3519-:d:813277
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/10/3519/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/10/3519/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stefan Tenbohlen & Sebastian Coenen & Mohammad Djamali & Andreas Müller & Mohammad Hamed Samimi & Martin Siegel, 2016. "Diagnostic Measurements for Power Transformers," Energies, MDPI, vol. 9(5), pages 1-25, May.
    2. Tiago Rabelo Chaves & Marcos Aurélio Izumida Martins & Kennedy Alves Martins & Amadeu Fernandes de Macedo & Silvia de Francisci, 2021. "Application Study in the Field of Solutions for the Monitoring Distribution Transformers of the Overhead Power Grid," Energies, MDPI, vol. 14(19), pages 1-15, September.
    3. Olga Melnikova & Alexandr Nazarychev & Konstantin Suslov, 2022. "Enhancement of the Technique for Calculation and Assessment of the Condition of Major Insulation of Power Transformers," Energies, MDPI, vol. 15(4), pages 1-13, February.
    4. Vahid Behjat & Reza Emadifar & Mehrdad Pourhossein & U. Mohan Rao & Issouf Fofana & Reza Najjar, 2021. "Improved Monitoring and Diagnosis of Transformer Solid Insulation Using Pertinent Chemical Indicators," Energies, MDPI, vol. 14(13), pages 1-13, July.
    5. Christian Gianoglio & Edoardo Ragusa & Paolo Gastaldo & Federico Gallesi & Francesco Guastavino, 2021. "Online Predictive Maintenance Monitoring Adopting Convolutional Neural Networks," Energies, MDPI, vol. 14(15), pages 1-23, August.
    6. Alhaytham Alqudsi & Ayman El-Hag, 2019. "Application of Machine Learning in Transformer Health Index Prediction," Energies, MDPI, vol. 12(14), pages 1-13, July.
    7. Yuanlin Luo & Zhaohui Li & Hong Wang, 2017. "A Review of Online Partial Discharge Measurement of Large Generators," Energies, MDPI, vol. 10(11), pages 1-32, October.
    8. Patryk Bohatyrewicz & Andrzej Mrozik, 2021. "The Analysis of Power Transformer Population Working in Different Operating Conditions with the Use of Health Index," Energies, MDPI, vol. 14(16), pages 1-14, August.
    9. Marek Florkowski, 2020. "Influence of Insulating Material Properties on Partial Discharges at DC Voltage," Energies, MDPI, vol. 13(17), pages 1-17, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrey A. Radionov & Ivan V. Liubimov & Igor M. Yachikov & Ildar R. Abdulveleev & Ekaterina A. Khramshina & Alexander S. Karandaev, 2023. "Method for Forecasting the Remaining Useful Life of a Furnace Transformer Based on Online Monitoring Data," Energies, MDPI, vol. 16(12), pages 1-27, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patryk Bohatyrewicz & Szymon Banaszak, 2022. "Assessment Criteria of Changes in Health Index Values over Time—A Transformer Population Study," Energies, MDPI, vol. 15(16), pages 1-15, August.
    2. Georgi Ivanov & Anelia Spasova & Valentin Mateev & Iliana Marinova, 2023. "Applied Complex Diagnostics and Monitoring of Special Power Transformers," Energies, MDPI, vol. 16(5), pages 1-24, February.
    3. Christian Gianoglio & Edoardo Ragusa & Paolo Gastaldo & Federico Gallesi & Francesco Guastavino, 2021. "Online Predictive Maintenance Monitoring Adopting Convolutional Neural Networks," Energies, MDPI, vol. 14(15), pages 1-23, August.
    4. Christian Gianoglio & Edoardo Ragusa & Andrea Bruzzone & Paolo Gastaldo & Rodolfo Zunino & Francesco Guastavino, 2020. "Unsupervised Monitoring System for Predictive Maintenance of High Voltage Apparatus," Energies, MDPI, vol. 13(5), pages 1-16, March.
    5. Mehran Tahir & Stefan Tenbohlen, 2019. "A Comprehensive Analysis of Windings Electrical and Mechanical Faults Using a High-Frequency Model," Energies, MDPI, vol. 13(1), pages 1-25, December.
    6. Lefeng Cheng & Tao Yu & Guoping Wang & Bo Yang & Lv Zhou, 2018. "Hot Spot Temperature and Grey Target Theory-Based Dynamic Modelling for Reliability Assessment of Transformer Oil-Paper Insulation Systems: A Practical Case Study," Energies, MDPI, vol. 11(1), pages 1-26, January.
    7. Jiefeng Liu & Hanbo Zheng & Yiyi Zhang & Hua Wei & Ruijin Liao, 2017. "Grey Relational Analysis for Insulation Condition Assessment of Power Transformers Based Upon Conventional Dielectric Response Measurement," Energies, MDPI, vol. 10(10), pages 1-16, October.
    8. Yulong Wang & Xiaohong Zhang & Lili Li & Jinyang Du & Junguo Gao, 2019. "Design of Partial Discharge Test Environment for Oil-Filled Submarine Cable Terminals and Ultrasonic Monitoring," Energies, MDPI, vol. 12(24), pages 1-14, December.
    9. Szymon Banaszak & Konstanty Marek Gawrylczyk & Katarzyna Trela, 2020. "Frequency Response Modelling of Transformer Windings Connected in Parallel," Energies, MDPI, vol. 13(6), pages 1-13, March.
    10. Szymon Banaszak & Wojciech Szoka, 2018. "Cross Test Comparison in Transformer Windings Frequency Response Analysis," Energies, MDPI, vol. 11(6), pages 1-12, May.
    11. Fatih Atalar & Aysel Ersoy & Pawel Rozga, 2022. "Investigation of Effects of Different High Voltage Types on Dielectric Strength of Insulating Liquids," Energies, MDPI, vol. 15(21), pages 1-25, October.
    12. Alexandra I. Khalyasmaa & Pavel V. Matrenin & Stanislav A. Eroshenko & Vadim Z. Manusov & Andrey M. Bramm & Alexey M. Romanov, 2022. "Data Mining Applied to Decision Support Systems for Power Transformers’ Health Diagnostics," Mathematics, MDPI, vol. 10(14), pages 1-25, July.
    13. Andrew Adewunmi Adekunle & Samson Okikiola Oparanti & Issouf Fofana, 2023. "Performance Assessment of Cellulose Paper Impregnated in Nanofluid for Power Transformer Insulation Application: A Review," Energies, MDPI, vol. 16(4), pages 1-32, February.
    14. Ghulam Amjad Hussain & Ashraf A. Zaher & Detlef Hummes & Madia Safdar & Matti Lehtonen, 2020. "Hybrid Sensing of Internal and Surface Partial Discharges in Air-Insulated Medium Voltage Switchgear," Energies, MDPI, vol. 13(7), pages 1-16, April.
    15. Mohammed El Amine Senoussaoui & Mostefa Brahami & Issouf Fofana, 2021. "Transformer Oil Quality Assessment Using Random Forest with Feature Engineering," Energies, MDPI, vol. 14(7), pages 1-15, March.
    16. Mehran Tahir & Stefan Tenbohlen, 2021. "Transformer Winding Condition Assessment Using Feedforward Artificial Neural Network and Frequency Response Measurements," Energies, MDPI, vol. 14(11), pages 1-25, May.
    17. Satoru Miyazaki, 2021. "Detection of Winding Axial Displacement of a Real Transformer by Frequency Response Analysis without Fingerprint Data," Energies, MDPI, vol. 15(1), pages 1-14, December.
    18. Fang Dao & Yun Zeng & Yidong Zou & Xiang Li & Jing Qian, 2021. "Acoustic Vibration Approach for Detecting Faults in Hydroelectric Units: A Review," Energies, MDPI, vol. 14(23), pages 1-16, November.
    19. Ahmad Nayyar Hassan & Ayman El-Hag, 2020. "Two-Layer Ensemble-Based Soft Voting Classifier for Transformer Oil Interfacial Tension Prediction," Energies, MDPI, vol. 13(7), pages 1-11, April.
    20. Chunguang Suo & Yanan Ren & Wenbin Zhang & Yincheng Li & Yanyun Wang & Yi Ke, 2021. "Evaluation Method for Winding Performance of Distribution Transformer," Energies, MDPI, vol. 14(18), pages 1-25, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:10:p:3519-:d:813277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.