IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i13p2485-d243641.html
   My bibliography  Save this article

Partial Discharge Classification Using Deep Learning Methods—Survey of Recent Progress

Author

Listed:
  • Sonia Barrios

    (Ormazabal Corporate Technology, 48340 Amorebieta, Spain)

  • David Buldain

    (Department of Electronic Engineering and Communications, University of Zaragoza, 50018 Zaragoza, Spain)

  • María Paz Comech

    (Instituto CIRCE (Universidad de Zaragoza—Fundación CIRCE), 50018 Zaragoza, Spain)

  • Ian Gilbert

    (Ormazabal Corporate Technology, 48340 Amorebieta, Spain)

  • Iñaki Orue

    (Ormazabal Corporate Technology, 48340 Amorebieta, Spain)

Abstract

This paper examines the recent advances made in the field of Deep Learning (DL) methods for the automated identification of Partial Discharges (PD). PD activity is an indication of the state and operational conditions of electrical equipment systems. There are several techniques for on-line PD measurements, but the typical classification and recognition method is made off-line and involves an expert manually extracting appropriate features from raw data and then using these to diagnose PD type and severity. Many methods have been developed over the years, so that the appropriate features expertly extracted are used as input for Machine Learning (ML) algorithms. More recently, with the developments in computation and data storage, DL methods have been used for automated features extraction and classification. Several contributions have demonstrated that Deep Neural Networks (DNN) have better accuracy than the typical ML methods providing more efficient automated identification techniques. However, improvements could be made regarding the general applicability of the method, the data acquisition, and the optimal DNN structure.

Suggested Citation

  • Sonia Barrios & David Buldain & María Paz Comech & Ian Gilbert & Iñaki Orue, 2019. "Partial Discharge Classification Using Deep Learning Methods—Survey of Recent Progress," Energies, MDPI, vol. 12(13), pages 1-16, June.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2485-:d:243641
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/13/2485/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/13/2485/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Minh-Tuan Nguyen & Viet-Hung Nguyen & Suk-Jun Yun & Yong-Hwa Kim, 2018. "Recurrent Neural Network for Partial Discharge Diagnosis in Gas-Insulated Switchgear," Energies, MDPI, vol. 11(5), pages 1-13, May.
    2. Abdullahi Abubakar Mas’ud & Ricardo Albarracín & Jorge Alfredo Ardila-Rey & Firdaus Muhammad-Sukki & Hazlee Azil Illias & Nurul Aini Bani & Abu Bakar Munir, 2016. "Artificial Neural Network Application for Partial Discharge Recognition: Survey and Future Directions," Energies, MDPI, vol. 9(8), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Qiang Chan & Wong Jee Keen Raymond & Hazlee Azil Illias & Mohamadariff Othman, 2023. "Partial Discharge Localization Techniques: A Review of Recent Progress," Energies, MDPI, vol. 16(6), pages 1-31, March.
    2. Andrey A. Radionov & Ivan V. Liubimov & Igor M. Yachikov & Ildar R. Abdulveleev & Ekaterina A. Khramshina & Alexander S. Karandaev, 2023. "Method for Forecasting the Remaining Useful Life of a Furnace Transformer Based on Online Monitoring Data," Energies, MDPI, vol. 16(12), pages 1-27, June.
    3. Christian Gianoglio & Edoardo Ragusa & Paolo Gastaldo & Federico Gallesi & Francesco Guastavino, 2021. "Online Predictive Maintenance Monitoring Adopting Convolutional Neural Networks," Energies, MDPI, vol. 14(15), pages 1-23, August.
    4. Tomasz Boczar & Sebastian Borucki & Daniel Jancarczyk & Marcin Bernas & Pawel Kurtasz, 2022. "Application of Selected Machine Learning Techniques for Identification of Basic Classes of Partial Discharges Occurring in Paper-Oil Insulation Measured by Acoustic Emission Technique," Energies, MDPI, vol. 15(14), pages 1-13, July.
    5. Sinda Kaziz & Mohamed Hadj Said & Antonino Imburgia & Bilel Maamer & Denis Flandre & Pietro Romano & Fares Tounsi, 2023. "Radiometric Partial Discharge Detection: A Review," Energies, MDPI, vol. 16(4), pages 1-33, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiaying Deng & Wenhai Zhang & Xiaomei Yang, 2019. "Recognition and Classification of Incipient Cable Failures Based on Variational Mode Decomposition and a Convolutional Neural Network," Energies, MDPI, vol. 12(10), pages 1-16, May.
    2. Mohammed A. Shams & Hussein I. Anis & Mohammed El-Shahat, 2021. "Denoising of Heavily Contaminated Partial Discharge Signals in High-Voltage Cables Using Maximal Overlap Discrete Wavelet Transform," Energies, MDPI, vol. 14(20), pages 1-22, October.
    3. Minh-Tuan Nguyen & Viet-Hung Nguyen & Suk-Jun Yun & Yong-Hwa Kim, 2018. "Recurrent Neural Network for Partial Discharge Diagnosis in Gas-Insulated Switchgear," Energies, MDPI, vol. 11(5), pages 1-13, May.
    4. Haresh Kumar & Muhammad Shafiq & Kimmo Kauhaniemi & Mohammed Elmusrati, 2024. "A Review on the Classification of Partial Discharges in Medium-Voltage Cables: Detection, Feature Extraction, Artificial Intelligence-Based Classification, and Optimization Techniques," Energies, MDPI, vol. 17(5), pages 1-31, February.
    5. Ana C. N. Pardauil & Thiago P. Nascimento & Marcelo R. S. Siqueira & Ubiratan H. Bezerra & Werbeston D. Oliveira, 2020. "Combined Approach Using Clustering-Random Forest to Evaluate Partial Discharge Patterns in Hydro Generators," Energies, MDPI, vol. 13(22), pages 1-18, November.
    6. Vo-Nguyen Tuyet-Doan & Tien-Tung Nguyen & Minh-Tuan Nguyen & Jong-Ho Lee & Yong-Hwa Kim, 2020. "Self-Attention Network for Partial-Discharge Diagnosis in Gas-Insulated Switchgear," Energies, MDPI, vol. 13(8), pages 1-16, April.
    7. Alexandru Pîrjan & George Căruțașu & Dana-Mihaela Petroșanu, 2018. "Designing, Developing, and Implementing a Forecasting Method for the Produced and Consumed Electricity in the Case of Small Wind Farms Situated on Quite Complex Hilly Terrain," Energies, MDPI, vol. 11(10), pages 1-42, October.
    8. Sanuri Ishak & Chong Tak Yaw & Siaw Paw Koh & Sieh Kiong Tiong & Chai Phing Chen & Talal Yusaf, 2021. "Fault Classification System for Switchgear CBM from an Ultrasound Analysis Technique Using Extreme Learning Machine," Energies, MDPI, vol. 14(19), pages 1-21, October.
    9. Seokho Moon & Hansam Cho & Eunji Koh & Yong Sung Cho & Hyoung Lok Oh & Younghoon Kim & Seoung Bum Kim, 2022. "Remanufacturing Decision-Making for Gas Insulated Switchgear with Remaining Useful Life Prediction," Sustainability, MDPI, vol. 14(19), pages 1-13, September.
    10. Daria Wotzka & Wojciech Sikorski & Cyprian Szymczak, 2022. "Investigating the Capability of PD-Type Recognition Based on UHF Signals Recorded with Different Antennas Using Supervised Machine Learning," Energies, MDPI, vol. 15(9), pages 1-20, April.
    11. Abdullahi Abubakar Mas’ud & Jorge Alfredo Ardila-Rey & Ricardo Albarracín & Firdaus Muhammad-Sukki & Nurul Aini Bani, 2017. "Comparison of the Performance of Artificial Neural Networks and Fuzzy Logic for Recognizing Different Partial Discharge Sources," Energies, MDPI, vol. 10(7), pages 1-20, July.
    12. Sara Mantach & Ahmed Ashraf & Hamed Janani & Behzad Kordi, 2021. "A Convolutional Neural Network-Based Model for Multi-Source and Single-Source Partial Discharge Pattern Classification Using Only Single-Source Training Set," Energies, MDPI, vol. 14(5), pages 1-16, March.
    13. Marek Florkowski, 2021. "Anomaly Detection, Trend Evolution, and Feature Extraction in Partial Discharge Patterns," Energies, MDPI, vol. 14(13), pages 1-18, June.
    14. Wang, Bo & Jia, Xiaoyu & Yang, Jian & Wang, Qiuwang, 2022. "Numerical study on temperature rise and structure optimization for a three-phase gas insulated switchgear busbar chamber," Energy, Elsevier, vol. 254(PC).
    15. Ju Tang & Miao Jin & Fuping Zeng & Siyuan Zhou & Xiaoxing Zhang & Yi Yang & Yan Ma, 2017. "Feature Selection for Partial Discharge Severity Assessment in Gas-Insulated Switchgear Based on Minimum Redundancy and Maximum Relevance," Energies, MDPI, vol. 10(10), pages 1-14, October.
    16. Yaseen Ahmed Mohammed Alsumaidaee & Chong Tak Yaw & Siaw Paw Koh & Sieh Kiong Tiong & Chai Phing Chen & Kharudin Ali, 2022. "Review of Medium-Voltage Switchgear Fault Detection in a Condition-Based Monitoring System by Using Deep Learning," Energies, MDPI, vol. 15(18), pages 1-34, September.
    17. Sara Mantach & Abdulla Lutfi & Hamed Moradi Tavasani & Ahmed Ashraf & Ayman El-Hag & Behzad Kordi, 2022. "Deep Learning in High Voltage Engineering: A Literature Review," Energies, MDPI, vol. 15(14), pages 1-32, July.
    18. Ju Tang & Xu Yang & Dong Yang & Qiang Yao & Yulong Miao & Chaohai Zhang & Fuping Zeng, 2017. "Using SF 6 Decomposed Component Analysis for the Diagnosis of Partial Discharge Severity Initiated by Free Metal Particle Defect," Energies, MDPI, vol. 10(8), pages 1-17, August.
    19. Dana-Mihaela Petroșanu & Alexandru Pîrjan, 2020. "Electricity Consumption Forecasting Based on a Bidirectional Long-Short-Term Memory Artificial Neural Network," Sustainability, MDPI, vol. 13(1), pages 1-31, December.
    20. Ju Tang & Xu Yang & Gaoxiang Ye & Qiang Yao & Yulong Miao & Fuping Zeng, 2017. "Decomposition Characteristics of SF 6 and Partial Discharge Recognition under Negative DC Conditions," Energies, MDPI, vol. 10(4), pages 1-16, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:13:p:2485-:d:243641. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.