IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i2p508-d722477.html
   My bibliography  Save this article

Partial Discharge Diagnostics: Data Cleaning and Feature Extraction

Author

Listed:
  • Donny Soh

    (Infocomm Technology Cluster, Singapore Institute of Technology (SIT), 10 Dover Drive, Singapore 138683, Singapore)

  • Sivaneasan Bala Krishnan

    (Engineering Cluster, Singapore Institute of Technology (SIT), 10 Dover Drive, Singapore 138683, Singapore)

  • Jacob Abraham

    (Infocomm Technology Cluster, Singapore Institute of Technology (SIT), 10 Dover Drive, Singapore 138683, Singapore)

  • Lai Kai Xian

    (SP Group, 2 Kallang Sector, Singapore 349277, Singapore)

  • Tseng King Jet

    (Engineering Cluster, Singapore Institute of Technology (SIT), 10 Dover Drive, Singapore 138683, Singapore)

  • Jimmy Fu Yongyi

    (SP Group, 2 Kallang Sector, Singapore 349277, Singapore)

Abstract

Detection of partial discharge (PD) in switchgears requires extensive data collection and time-consuming analyses. Data from real live operational environments pose great challenges in the development of robust and efficient detection algorithms due to overlapping PDs and the strong presence of random white noise. This paper presents a novel approach using clustering for data cleaning and feature extraction of phase-resolved partial discharge (PRPD) plots derived from live operational data. A total of 452 PRPD 2D plots collected from distribution substations over a six-month period were used to test the proposed technique. The output of the clustering technique is evaluated on different types of machine learning classification techniques and the accuracy is compared using balanced accuracy score. The proposed technique extends the measurement abilities of a portable PD measurement tool for diagnostics of switchgear condition, helping utilities to quickly detect potential PD activities with minimal human manual analysis and higher accuracy.

Suggested Citation

  • Donny Soh & Sivaneasan Bala Krishnan & Jacob Abraham & Lai Kai Xian & Tseng King Jet & Jimmy Fu Yongyi, 2022. "Partial Discharge Diagnostics: Data Cleaning and Feature Extraction," Energies, MDPI, vol. 15(2), pages 1-12, January.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:508-:d:722477
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/2/508/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/2/508/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuanlin Luo & Zhaohui Li & Hong Wang, 2017. "A Review of Online Partial Discharge Measurement of Large Generators," Energies, MDPI, vol. 10(11), pages 1-32, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ghulam Amjad Hussain & Ashraf A. Zaher & Detlef Hummes & Madia Safdar & Matti Lehtonen, 2020. "Hybrid Sensing of Internal and Surface Partial Discharges in Air-Insulated Medium Voltage Switchgear," Energies, MDPI, vol. 13(7), pages 1-16, April.
    2. Fang Dao & Yun Zeng & Yidong Zou & Xiang Li & Jing Qian, 2021. "Acoustic Vibration Approach for Detecting Faults in Hydroelectric Units: A Review," Energies, MDPI, vol. 14(23), pages 1-16, November.
    3. Muhammad Shafiq & Ivar Kiitam & Kimmo Kauhaniemi & Paul Taklaja & Lauri Kütt & Ivo Palu, 2020. "Performance Comparison of PD Data Acquisition Techniques for Condition Monitoring of Medium Voltage Cables," Energies, MDPI, vol. 13(16), pages 1-14, August.
    4. Dmitry A. Ivanov & Marat F. Sadykov & Danil A. Yaroslavsky & Aleksandr V. Golenishchev-Kutuzov & Tatyana G. Galieva, 2021. "Non-Contact Methods for High-Voltage Insulation Equipment Diagnosis during Operation," Energies, MDPI, vol. 14(18), pages 1-16, September.
    5. Sara Mantach & Ahmed Ashraf & Hamed Janani & Behzad Kordi, 2021. "A Convolutional Neural Network-Based Model for Multi-Source and Single-Source Partial Discharge Pattern Classification Using Only Single-Source Training Set," Energies, MDPI, vol. 14(5), pages 1-16, March.
    6. Alexander S. Karandaev & Igor M. Yachikov & Andrey A. Radionov & Ivan V. Liubimov & Nikolay N. Druzhinin & Ekaterina A. Khramshina, 2022. "Fuzzy Algorithms for Diagnosis of Furnace Transformer Insulation Condition," Energies, MDPI, vol. 15(10), pages 1-21, May.
    7. Christian Gianoglio & Edoardo Ragusa & Paolo Gastaldo & Federico Gallesi & Francesco Guastavino, 2021. "Online Predictive Maintenance Monitoring Adopting Convolutional Neural Networks," Energies, MDPI, vol. 14(15), pages 1-23, August.
    8. Dimosthenis Verginadis & Athanasios Karlis & Michael G. Danikas & Jose A. Antonino-Daviu, 2021. "Investigation of Factors Affecting Partial Discharges on Epoxy Resin: Simulation, Experiments, and Reference on Electrical Machines," Energies, MDPI, vol. 14(20), pages 1-18, October.
    9. Sara Mantach & Abdulla Lutfi & Hamed Moradi Tavasani & Ahmed Ashraf & Ayman El-Hag & Behzad Kordi, 2022. "Deep Learning in High Voltage Engineering: A Literature Review," Energies, MDPI, vol. 15(14), pages 1-32, July.
    10. Christian Gianoglio & Edoardo Ragusa & Andrea Bruzzone & Paolo Gastaldo & Rodolfo Zunino & Francesco Guastavino, 2020. "Unsupervised Monitoring System for Predictive Maintenance of High Voltage Apparatus," Energies, MDPI, vol. 13(5), pages 1-16, March.
    11. Anderson J. C. Sena & Rodrigo M. S. de Oliveira & Júlio A. S. do Nascimento, 2021. "Frequency Resolved Partial Discharges Based on Spectral Pulse Counting," Energies, MDPI, vol. 14(21), pages 1-36, October.
    12. Jonathan dos Santos Cruz & Fabiano Fruett & Renato da Rocha Lopes & Fabio Luiz Takaki & Claudia de Andrade Tambascia & Eduardo Rodrigues de Lima & Mateus Giesbrecht, 2022. "Partial Discharges Monitoring for Electric Machines Diagnosis: A Review," Energies, MDPI, vol. 15(21), pages 1-31, October.
    13. Krzysztof Walczak, 2023. "Localization of HV Insulation Defects Using a System of Associated Capacitive Sensors," Energies, MDPI, vol. 16(5), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:2:p:508-:d:722477. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.