IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i15p4711-d607755.html
   My bibliography  Save this article

Online Predictive Maintenance Monitoring Adopting Convolutional Neural Networks

Author

Listed:
  • Christian Gianoglio

    (Electrical, Electronics and Telecommunication Engineering and Naval Architecture Department (DITEN), University of Genoa, 16145 Genova, Italy)

  • Edoardo Ragusa

    (Electrical, Electronics and Telecommunication Engineering and Naval Architecture Department (DITEN), University of Genoa, 16145 Genova, Italy)

  • Paolo Gastaldo

    (Electrical, Electronics and Telecommunication Engineering and Naval Architecture Department (DITEN), University of Genoa, 16145 Genova, Italy)

  • Federico Gallesi

    (Electrical, Electronics and Telecommunication Engineering and Naval Architecture Department (DITEN), University of Genoa, 16145 Genova, Italy)

  • Francesco Guastavino

    (Electrical, Electronics and Telecommunication Engineering and Naval Architecture Department (DITEN), University of Genoa, 16145 Genova, Italy)

Abstract

Thermal, electrical and mechanical stresses age the electrical insulation systems of high voltage (HV) apparatuses until the breakdown. The monitoring of the partial discharges (PDs) effectively assesses the insulation condition. PDs are both the symptoms and the causes of insulation aging and—in the long term—can lead to a breakdown, with a burdensome economic loss. This paper proposes the convolutional neural networks (CNNs) to investigate and analyze the aging process of enameled wires, thus predicting the life status of the insulation systems. The CNNs training does not require any kind of assumption of how the factors (e.g., voltage, frequency and temperature) contribute to the life model. The experiments confirm that the proposal obtains better estimations of the life status of twisted pair specimens concerning existing solutions, which are based on strong hypotheses about the life model dependency on the factors.

Suggested Citation

  • Christian Gianoglio & Edoardo Ragusa & Paolo Gastaldo & Federico Gallesi & Francesco Guastavino, 2021. "Online Predictive Maintenance Monitoring Adopting Convolutional Neural Networks," Energies, MDPI, vol. 14(15), pages 1-23, August.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4711-:d:607755
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/15/4711/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/15/4711/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stefan Tenbohlen & Sebastian Coenen & Mohammad Djamali & Andreas Müller & Mohammad Hamed Samimi & Martin Siegel, 2016. "Diagnostic Measurements for Power Transformers," Energies, MDPI, vol. 9(5), pages 1-25, May.
    2. Salameh, F. & Picot, A. & Chabert, M. & Maussion, P., 2017. "Regression methods for improved lifespan modeling of low voltage machine insulation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 131(C), pages 200-216.
    3. Li, Xiang & Ding, Qian & Sun, Jian-Qiao, 2018. "Remaining useful life estimation in prognostics using deep convolution neural networks," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 1-11.
    4. Sonia Barrios & David Buldain & María Paz Comech & Ian Gilbert & Iñaki Orue, 2019. "Partial Discharge Classification Using Deep Learning Methods—Survey of Recent Progress," Energies, MDPI, vol. 12(13), pages 1-16, June.
    5. Yuanlin Luo & Zhaohui Li & Hong Wang, 2017. "A Review of Online Partial Discharge Measurement of Large Generators," Energies, MDPI, vol. 10(11), pages 1-32, October.
    6. Christian Gianoglio & Edoardo Ragusa & Andrea Bruzzone & Paolo Gastaldo & Rodolfo Zunino & Francesco Guastavino, 2020. "Unsupervised Monitoring System for Predictive Maintenance of High Voltage Apparatus," Energies, MDPI, vol. 13(5), pages 1-16, March.
    7. Vanessa Neves Höpner & Volmir Eugênio Wilhelm, 2021. "Insulation Life Span of Low-Voltage Electric Motors—A Survey," Energies, MDPI, vol. 14(6), pages 1-32, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arshiah Yusuf Mirza & Ali Bazzi & Hiep Hoang Nguyen & Yang Cao, 2022. "Motor Stator Insulation Stress Due to Multilevel Inverter Voltage Output Levels and Power Quality," Energies, MDPI, vol. 15(11), pages 1-18, June.
    2. Sonia Ait-Amar & Abdoulay Koita & Gabriel Vélu, 2022. "Interpretation of Eccentricity of an Enameled Wire by Capacitance Measurements," Energies, MDPI, vol. 15(8), pages 1-9, April.
    3. Alexander S. Karandaev & Igor M. Yachikov & Andrey A. Radionov & Ivan V. Liubimov & Nikolay N. Druzhinin & Ekaterina A. Khramshina, 2022. "Fuzzy Algorithms for Diagnosis of Furnace Transformer Insulation Condition," Energies, MDPI, vol. 15(10), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alexander S. Karandaev & Igor M. Yachikov & Andrey A. Radionov & Ivan V. Liubimov & Nikolay N. Druzhinin & Ekaterina A. Khramshina, 2022. "Fuzzy Algorithms for Diagnosis of Furnace Transformer Insulation Condition," Energies, MDPI, vol. 15(10), pages 1-21, May.
    2. Christian Gianoglio & Edoardo Ragusa & Andrea Bruzzone & Paolo Gastaldo & Rodolfo Zunino & Francesco Guastavino, 2020. "Unsupervised Monitoring System for Predictive Maintenance of High Voltage Apparatus," Energies, MDPI, vol. 13(5), pages 1-16, March.
    3. Mehran Tahir & Stefan Tenbohlen, 2019. "A Comprehensive Analysis of Windings Electrical and Mechanical Faults Using a High-Frequency Model," Energies, MDPI, vol. 13(1), pages 1-25, December.
    4. Lin, Yan-Hui & Chang, Liang & Guan, Lu-Xin, 2024. "Enhanced stochastic recurrent hybrid model for RUL Predictions via Semi-supervised learning," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    5. Lefeng Cheng & Tao Yu & Guoping Wang & Bo Yang & Lv Zhou, 2018. "Hot Spot Temperature and Grey Target Theory-Based Dynamic Modelling for Reliability Assessment of Transformer Oil-Paper Insulation Systems: A Practical Case Study," Energies, MDPI, vol. 11(1), pages 1-26, January.
    6. Li, Yuanfu & Chen, Yifan & Shao, Haonan & Zhang, Huisheng, 2023. "A novel dual attention mechanism combined with knowledge for remaining useful life prediction based on gated recurrent units," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    7. Jiefeng Liu & Hanbo Zheng & Yiyi Zhang & Hua Wei & Ruijin Liao, 2017. "Grey Relational Analysis for Insulation Condition Assessment of Power Transformers Based Upon Conventional Dielectric Response Measurement," Energies, MDPI, vol. 10(10), pages 1-16, October.
    8. Xiao, Lei & Tang, Junxuan & Zhang, Xinghui & Bechhoefer, Eric & Ding, Siyi, 2021. "Remaining useful life prediction based on intentional noise injection and feature reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    9. Li, Yuanfu & Chen, Yao & Hu, Zhenchao & Zhang, Huisheng, 2023. "Remaining useful life prediction of aero-engine enabled by fusing knowledge and deep learning models," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    10. Marcin Witczak & Marcin Mrugalski & Bogdan Lipiec, 2021. "Remaining Useful Life Prediction of MOSFETs via the Takagi–Sugeno Framework," Energies, MDPI, vol. 14(8), pages 1-23, April.
    11. Yulong Wang & Xiaohong Zhang & Lili Li & Jinyang Du & Junguo Gao, 2019. "Design of Partial Discharge Test Environment for Oil-Filled Submarine Cable Terminals and Ultrasonic Monitoring," Energies, MDPI, vol. 12(24), pages 1-14, December.
    12. Liu, Lu & Song, Xiao & Zhou, Zhetao, 2022. "Aircraft engine remaining useful life estimation via a double attention-based data-driven architecture," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    13. Zhang, Jiusi & Li, Xiang & Tian, Jilun & Luo, Hao & Yin, Shen, 2023. "An integrated multi-head dual sparse self-attention network for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    14. Yaping Li & Enrico Zio & Ershun Pan, 2021. "An MEWMA-based segmental multivariate hidden Markov model for degradation assessment and prediction," Journal of Risk and Reliability, , vol. 235(5), pages 831-844, October.
    15. Szymon Banaszak & Konstanty Marek Gawrylczyk & Katarzyna Trela, 2020. "Frequency Response Modelling of Transformer Windings Connected in Parallel," Energies, MDPI, vol. 13(6), pages 1-13, March.
    16. Zhuang, Jichao & Jia, Minping & Ding, Yifei & Ding, Peng, 2021. "Temporal convolution-based transferable cross-domain adaptation approach for remaining useful life estimation under variable failure behaviors," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    17. Khaled Akkad & David He, 2023. "A dynamic mode decomposition based deep learning technique for prognostics," Journal of Intelligent Manufacturing, Springer, vol. 34(5), pages 2207-2224, June.
    18. Weeber, Christoph, 2024. "Development of a cost optimal predictive maintenance strategy," Junior Management Science (JUMS), Junior Management Science e. V., vol. 9(3), pages 1805-1835.
    19. Nadire Cavus & Yakubu Bala Mohammed & Mohammed Nasiru Yakubu, 2021. "An Artificial Intelligence-Based Model for Prediction of Parameters Affecting Sustainable Growth of Mobile Banking Apps," Sustainability, MDPI, vol. 13(11), pages 1-21, May.
    20. Costa, Nahuel & Sánchez, Luciano, 2022. "Variational encoding approach for interpretable assessment of remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4711-:d:607755. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.