IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v10y2020i8p322-d393451.html
   My bibliography  Save this article

Industrial Archaeology Applied to the Study of an Ancient Harvesting Machine: Three-Dimensional Modelling and Virtual Reconstruction

Author

Listed:
  • José Ignacio Rojas-Sola

    (Department of Engineering Graphics, Design and Projects, University of Jaén, 23071 Jaén, Spain)

  • Gloria del Río-Cidoncha

    (Department of Engineering Graphics, University of Seville, 41092 Seville, Spain)

  • Ángel Coronil-García

    (University of Seville, 41092 Seville, Spain)

Abstract

This article shows the three-dimensional (3D) modelling and virtual reconstruction of an ancient harvesting machine developed at the beginning of the 19th century. SolidWorks software is employed to obtain the 3D model of this historical invention and its geometric documentation. The original material for the research is available on a farm located in the province of Cádiz (Spain). Thanks to the three-dimensional modelling performed, both its operation and the final assembly of this invention can be explained in detail in a coherent way. Having carried out the functional analysis, it can be verified that the machine combines well-performed chain-sprocket transmissions, which, together with complex gearboxes with parallel and bevel gears, make this reaper a very reliable machine. Furthermore, the inclusion of elements such as gimbal joints on shafts with possible misalignments, and clutches to adapt the operation of the machine to the needs of the operator, makes it highly versatile and functional without over-exerting the mechanics. From a technical point of view, the complex transmission systems, the perfect synchronization achieved between all its parts, and the combination of continuous oscillatory movements, such as that of sheaf compactors with intermittent movements as complex as that of the knotting system, are all worthy of note, and reveal the great work of engineering involved in this historical invention.

Suggested Citation

  • José Ignacio Rojas-Sola & Gloria del Río-Cidoncha & Ángel Coronil-García, 2020. "Industrial Archaeology Applied to the Study of an Ancient Harvesting Machine: Three-Dimensional Modelling and Virtual Reconstruction," Agriculture, MDPI, vol. 10(8), pages 1-23, August.
  • Handle: RePEc:gam:jagris:v:10:y:2020:i:8:p:322-:d:393451
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/10/8/322/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/10/8/322/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Volodymyr Bulgakov & Simone Pascuzzi & Volodymyr Nadykto & Semjons Ivanovs, 2018. "A Mathematical Model of the Plane-Parallel Movement of an Asymmetric Machine-and-Tractor Aggregate," Agriculture, MDPI, vol. 8(10), pages 1-15, October.
    2. Said A. Hamido & Kelly T. Morgan, 2018. "Harvesting Method Affects Water Dynamics and Yield of Sweet Orange with Huanglongbing," Agriculture, MDPI, vol. 8(3), pages 1-10, March.
    3. Christian Andreasen & Zahra Bitarafan & Johanna Fenselau & Christoph Glasner, 2018. "Exploiting Waste Heat from Combine Harvesters to Damage Harvested Weed Seeds and Reduce Weed Infestation," Agriculture, MDPI, vol. 8(3), pages 1-12, March.
    4. Arrigo Salvatore Guerrieri & Alexandros Sotirios Anifantis & Francesco Santoro & Simone Pascuzzi, 2019. "Study of a Large Square Baler with Innovative Technological Systems that Optimize the Baling Effectiveness," Agriculture, MDPI, vol. 9(5), pages 1-8, April.
    5. Lisa Wasko DeVetter & Wei Qiang Yang & Fumiomi Takeda & Scott Korthuis & Changying Li, 2019. "Modified Over-the-Row Machine Harvesters to Improve Northern Highbush Blueberry Fresh Fruit Quality," Agriculture, MDPI, vol. 9(1), pages 1-10, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Artur Przywara & Francesco Santoro & Artur Kraszkiewicz & Anna Pecyna & Simone Pascuzzi, 2020. "Experimental Study of Disc Fertilizer Spreader Performance," Agriculture, MDPI, vol. 10(10), pages 1-11, October.
    2. Volodymyr Bulgakov & Simone Pascuzzi & Semjons Ivanovs & Francesco Santoro & Alexandros Sotirios Anifantis & Ievhen Ihnatiev, 2020. "Performance Assessment of Front-Mounted Beet Topper Machine for Biomass Harvesting," Energies, MDPI, vol. 13(14), pages 1-12, July.
    3. Volodymyr Bulgakov & Simone Pascuzzi & Semjons Ivanovs & Zinoviy Ruzhylo & Ivan Fedosiy & Francesco Santoro, 2020. "A New Spiral Potato Cleaner to Enhance the Removal of Impurities and Soil Clods in Potato Harvesting," Sustainability, MDPI, vol. 12(23), pages 1-19, November.
    4. Simone Pascuzzi & Volodymyr Bulgakov & Francesco Santoro & Alexandros Sotirios Anifantis & Semjons Ivanovs & Ivan Holovach, 2020. "A Study on the Drift of Spray Droplets Dipped in Airflows with Different Directions," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
    5. Mohamed A. Hassaan & Antonio Pantaleo & Francesco Santoro & Marwa R. Elkatory & Giuseppe De Mastro & Amany El Sikaily & Safaa Ragab & Ahmed El Nemr, 2020. "Techno-Economic Analysis of ZnO Nanoparticles Pretreatments for Biogas Production from Barley Straw," Energies, MDPI, vol. 13(19), pages 1-26, September.
    6. Simone Pascuzzi & Alexandros Sotirios Anifantis & Francesco Santoro, 2020. "The Concept of a Compact Profile Agricultural Tractor Suitable for Use on Specialised Tree Crops," Agriculture, MDPI, vol. 10(4), pages 1-10, April.
    7. Volodymyr Bulgakov & Simone Pascuzzi & Valerii Adamchuk & Volodymyr Kuvachov & Ladislav Nozdrovicky, 2019. "Theoretical Study of Transverse Offsets of Wide Span Tractor Working Implements and Their Influence on Damage to Row Crops," Agriculture, MDPI, vol. 9(7), pages 1-10, July.
    8. Sara Rajabi Hamedani & Mauro Villarini & Andrea Colantoni & Maurizio Carlini & Massimo Cecchini & Francesco Santoro & Antonio Pantaleo, 2020. "Environmental and Economic Analysis of an Anaerobic Co-Digestion Power Plant Integrated with a Compost Plant," Energies, MDPI, vol. 13(11), pages 1-14, May.
    9. Marek Boryga & Paweł Kołodziej & Krzysztof Gołacki, 2020. "Application of Polynomial Transition Curves for Trajectory Planning on the Headlands," Agriculture, MDPI, vol. 10(5), pages 1-16, May.
    10. Anna Stankiewicz, 2019. "Optimal and Robustly Optimal Consumption of Stretch Film Used for Wrapping Cylindrical Baled Silage," Agriculture, MDPI, vol. 9(12), pages 1-27, November.
    11. Said A. Hamido & Kelly T. Morgan, 2021. "The Effect of Irrigation Rate on the Water Relations of Young Citrus Trees in High-Density Planting," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    12. Christoph Glasner & Christopher Vieregge & Josef Robert & Johanna Fenselau & Zahra Bitarafan & Christian Andreasen, 2019. "Evaluation of New Harvesting Methods to Reduce Weeds on Arable Fields and Collect a New Feedstock," Energies, MDPI, vol. 12(9), pages 1-13, May.
    13. Carlito Balingbing & Nguyen Van Hung & Ampy Paulo Roxas & Daniel Aquino & Mary Grace Barbacias & Martin Gummert, 2020. "An Assessment on the Technical and Economic Feasibility of Mechanized Rice Straw Collection in the Philippines," Sustainability, MDPI, vol. 12(17), pages 1-15, September.
    14. Volodymyr Bulgakov & Volodymyr Nadykto & Olga Orynycz & Simone Pascuzzi, 2022. "Reduction in Energy Consumption by Mitigation of Cultivation Resistance Due to the New Fallow Harrow Concept," Energies, MDPI, vol. 15(22), pages 1-12, November.
    15. Volodymyr Bulgakov & Simone Pascuzzi & Alexandros Sotirios Anifantis & Francesco Santoro, 2019. "Oscillations Analysis of Front-Mounted Beet Topper Machine for Biomass Harvesting," Energies, MDPI, vol. 12(14), pages 1-14, July.
    16. Tatevik Yezekyan & Francesco Marinello & Giannantonio Armentano & Samuele Trestini & Luigi Sartori, 2018. "Definition of Reference Models for Power, Weight, Working Width, and Price for Seeding Machines," Agriculture, MDPI, vol. 8(12), pages 1-13, November.
    17. Luca Brondino & Danielle Borra & Nicole Roberta Giuggioli & Stefano Massaglia, 2021. "Mechanized Blueberry Harvesting: Preliminary Results in the Italian Context," Agriculture, MDPI, vol. 11(12), pages 1-14, November.
    18. Steven A. Sargent & Fumiomi Takeda & Jeffrey G. Williamson & Adrian D. Berry, 2019. "Harvest of Southern Highbush Blueberry with a Modified, Over-The-Row Mechanical Harvester: Use of Handheld Shakers and Soft Catch Surfaces," Agriculture, MDPI, vol. 10(1), pages 1-15, December.
    19. Antonio Pantaleo & Mauro Villarini & Andrea Colantoni & Maurizio Carlini & Francesco Santoro & Sara Rajabi Hamedani, 2020. "Techno-Economic Modeling of Biomass Pellet Routes: Feasibility in Italy," Energies, MDPI, vol. 13(7), pages 1-15, April.
    20. Volodymyr Bulgakov & Simone Pascuzzi & Hristo Beloev & Semjons Ivanovs, 2019. "Theoretical Investigations of the Headland Turning Agility of a Trailed Asymmetric Implement-and-Tractor Aggregate," Agriculture, MDPI, vol. 9(10), pages 1-11, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:10:y:2020:i:8:p:322-:d:393451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.