IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v45y2011i5p769-781.html
   My bibliography  Save this article

Increasing the capacity of signalized intersections with separate left turn phases

Author

Listed:
  • Xuan, Yiguang
  • Daganzo, Carlos F.
  • Cassidy, Michael J.

Abstract

A separate turn phase is often used on the approach leg to an intersections with heavy left turns. This wastes capacity on the approach because some of its lanes cannot discharge during its green phases. The paper shows that the problem can be eliminated by reorganizing traffic on all the lanes upstream of an intersection using a mid-block pre-signal. If drivers behave deterministically, the capacity that can be achieved is the same as if there were no left turns. However, if the reorganization is too drastic, it may be counterintuitive to drivers. This can be remedied by reorganizing traffic on just some of the available lanes. It is shown that such partial reorganization still increases capacity significantly, even if drivers behave randomly and only one lane is reorganized. The paper shows how to optimize the design of a pre-signal system for a generic intersection. It also identifies both, the potential benefits of the proposed system for a broad class of intersections, and the domain of application where the benefits are most significant.

Suggested Citation

  • Xuan, Yiguang & Daganzo, Carlos F. & Cassidy, Michael J., 2011. "Increasing the capacity of signalized intersections with separate left turn phases," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 769-781, June.
  • Handle: RePEc:eee:transb:v:45:y:2011:i:5:p:769-781
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(11)00031-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Daganzo, Carlos F., 2007. "Urban gridlock: Macroscopic modeling and mitigation approaches," Transportation Research Part B: Methodological, Elsevier, vol. 41(1), pages 49-62, January.
    2. Wu, Jianping & Hounsell, Nick, 1998. "Bus Priority Using pre-signals," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(8), pages 563-583, November.
    3. Xuan, Yiguang & Gayah, Vikash & Daganzo, Carlos & Cassidy, Michael, 2009. "Multimodal Traffic at Isolated Signalized Intersections: New Management Strategies to Increase Capacity," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7fk7j154, Institute of Transportation Studies, UC Berkeley.
    4. Wong, C. K. & Wong, S. C., 2003. "Lane-based optimization of signal timings for isolated junctions," Transportation Research Part B: Methodological, Elsevier, vol. 37(1), pages 63-84, January.
    5. Newell, Gordon F., 1989. "Theory of highway traffic signals," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt7zn2b9bc, Institute of Transportation Studies, UC Berkeley.
    6. Gallivan, Stephen & Heydecker, Benjamin, 1988. "Optimising the control performance of traffic signals at a single junction," Transportation Research Part B: Methodological, Elsevier, vol. 22(5), pages 357-370, October.
    7. Silcock, J. P., 1997. "Designing signal-controlled junctions for group-based operation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 31(2), pages 157-173, March.
    8. Improta, G. & Cantarella, G. E., 1984. "Control system design for an individual signalized junction," Transportation Research Part B: Methodological, Elsevier, vol. 18(2), pages 147-167, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Jiaming & Kulcsár, Balázs & Ahn, Soyoung & Qu, Xiaobo, 2020. "Emergency vehicle lane pre-clearing: From microscopic cooperation to routing decision making," Transportation Research Part B: Methodological, Elsevier, vol. 141(C), pages 223-239.
    2. Fu, Ding-Jun & Zhang, Cun-Bao & Liu, Jun & Li, Tao & Li, Qi-Lang, 2024. "Research of the left-turn vehicles lane-changing behaviors at signalized intersections with contraflow lane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    3. Ma, Wanjing & Liu, Ye & Zhao, Jing & Wu, Ning, 2017. "Increasing the capacity of signalized intersections with left-turn waiting areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 181-196.
    4. Zhao, Jing & Yan, Jiachao & Wang, Jiawen, 2019. "Analysis of alternative treatments for left turn bicycles at tandem intersections," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 314-328.
    5. Tan, Jiyuan & Li, Li & Li, Zhiheng & Zhang, Yi, 2013. "Distribution models for start-up lost time and effective departure flow rate," Transportation Research Part A: Policy and Practice, Elsevier, vol. 51(C), pages 1-11.
    6. Wei Wu & Wanjing Ma & Kejun Long & Heping Zhou & Yi Zhang, 2016. "Designing Sustainable Public Transportation: Integrated Optimization of Bus Speed and Holding Time in a Connected Vehicle Environment," Sustainability, MDPI, vol. 8(11), pages 1-15, November.
    7. Yan, Chiwei & Jiang, Hai & Xie, Siyang, 2014. "Capacity optimization of an isolated intersection under the phase swap sorting strategy," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 85-106.
    8. Guler, S. Ilgin & Cassidy, Michael J., 2012. "Strategies for sharing bottleneck capacity among buses and cars," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1334-1345.
    9. Muhammad Tahmidul Haq & Amirarsalan Mehrara Molan & Khaled Ksaibati, 2022. "Evaluating Pedestrian Service of the New Super Diverging Diamond Interchange on Three Case Study Sites in Denver, Colorado," Sustainability, MDPI, vol. 14(24), pages 1-17, December.
    10. Yongtao Zheng & Xuedong Hua & Wei Wang & Jialiang Xiao & Dongya Li, 2020. "Analysis of a Signalized Intersection with Dynamic Use of the Left-Turn Lane for Opposite through Traffic," Sustainability, MDPI, vol. 12(18), pages 1-29, September.
    11. Bo Feng & Mingming Zheng & Yan Liu, 2023. "Optimization of Signal Timing for the Contraflow Left-Turn Lane at Signalized Intersections Based on Delay Analysis," Sustainability, MDPI, vol. 15(8), pages 1-23, April.
    12. Huang, Jian & Hu, Mao-Bin & Jiang, Rui & Li, Ming, 2018. "Effect of pre-signals in a Manhattan-like urban traffic network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 71-85.
    13. Jixiang Wang & Haiyang Yu & Siqi Chen & Zechang Ye & Yilong Ren, 2023. "Heterogeneous Traffic Flow Signal Control and CAV Trajectory Optimization Based on Pre-Signal Lights and Dedicated CAV Lanes," Sustainability, MDPI, vol. 15(21), pages 1-20, October.
    14. Wang, Tao & Yuan, Zijian & Zhang, Yuanshu & Zhang, Jing & Tian, Junfang, 2023. "A driving guidance strategy with pre-stop line at signalized intersection: Collaborative optimization of capacity and fuel consumption," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 626(C).
    15. Yan Li & Sirui Nan & Xiaolin Gong & Rui Ma, 2019. "A geometric design method for intersections with pre-signal systems using a phase swap sorting strategy," PLOS ONE, Public Library of Science, vol. 14(5), pages 1-22, May.
    16. Yang Shao & Zhongbin Luo & Huan Wu & Xueyan Han & Binghong Pan & Shangru Liu & Christian G. Claudel, 2020. "Evaluation of Two Improved Schemes at Non-Aligned Intersections Affected by a Work Zone with an Entropy Method," Sustainability, MDPI, vol. 12(14), pages 1-24, July.
    17. Chen Zhao & Yulin Chang & Peng Zhang, 2018. "Coordinated Control Model of Main-Signal and Pre-Signal for Intersections with Dynamic Waiting Lanes," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    18. Li, Xiang & Sun, Jian-Qiao, 2016. "Effects of turning and through lane sharing on traffic performance at intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 622-640.
    19. Tang, Liying & Liu, Yugang & Li, JiaLi & Qi, Ruiting & Zheng, Shuai & Chen, Bin & Yang, Hongtai, 2020. "Pedestrian crossing design and analysis for symmetric intersections: Efficiency and safety," Transportation Research Part A: Policy and Practice, Elsevier, vol. 142(C), pages 187-206.
    20. Saha, Arpita & Chakraborty, Souvik & Chandra, Satish & Ghosh, Indrajit, 2018. "Kriging based saturation flow models for traffic conditions in Indian cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 38-51.
    21. Yutong Sun & Jin Li & Xiaozhong Wei & Yuling Jiao, 2021. "Tandem Design of Bus Priority Based on a Pre-Signal System," Sustainability, MDPI, vol. 13(18), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yan, Chiwei & Jiang, Hai & Xie, Siyang, 2014. "Capacity optimization of an isolated intersection under the phase swap sorting strategy," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 85-106.
    2. Yu, Chunhui & Ma, Wanjing & Yang, Xiaoguang, 2020. "A time-slot based signal scheme model for fixed-time control at isolated intersections," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 176-192.
    3. Memoli, Silvio & Cantarella, Giulio E. & de Luca, Stefano & Pace, Roberta Di, 2017. "Network signal setting design with stage sequence optimisation," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 20-42.
    4. Lee, Seunghyeon & Wong, S.C. & Varaiya, Pravin, 2017. "Group-based hierarchical adaptive traffic-signal control part I: Formulation," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 1-18.
    5. Chi-kwong Wong & Yiu-yin Lee, 2020. "Lane-Based Traffic Signal Simulation and Optimization for Preventing Overflow," Mathematics, MDPI, vol. 8(8), pages 1-28, August.
    6. Wong, C. K. & Wong, S. C., 2003. "Lane-based optimization of signal timings for isolated junctions," Transportation Research Part B: Methodological, Elsevier, vol. 37(1), pages 63-84, January.
    7. Wong, C.K. & Heydecker, B.G., 2011. "Optimal allocation of turns to lanes at an isolated signal-controlled junction," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 667-681, May.
    8. Wong, S. C. & Wong, W. T. & Leung, C. M. & Tong, C. O., 2002. "Group-based optimization of a time-dependent TRANSYT traffic model for area traffic control," Transportation Research Part B: Methodological, Elsevier, vol. 36(4), pages 291-312, May.
    9. Chen Zhao & Yulin Chang & Peng Zhang, 2018. "Coordinated Control Model of Main-Signal and Pre-Signal for Intersections with Dynamic Waiting Lanes," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    10. Guler, S. Ilgin & Cassidy, Michael J., 2012. "Strategies for sharing bottleneck capacity among buses and cars," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1334-1345.
    11. Dujardin, Yann & Vanderpooten, Daniel & Boillot, Florence, 2015. "A multi-objective interactive system for adaptive traffic control," European Journal of Operational Research, Elsevier, vol. 244(2), pages 601-610.
    12. Haitao, He & Menendez, Monica & Ilgin Guler, S., 2018. "Analytical evaluation of flexible-sharing strategies on multimodal arterials," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PB), pages 364-379.
    13. Yu, Chunhui & Ma, Wanjing & Han, Ke & Yang, Xiaoguang, 2017. "Optimization of vehicle and pedestrian signals at isolated intersections," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 135-153.
    14. Yu, Chunhui & Feng, Yiheng & Liu, Henry X. & Ma, Wanjing & Yang, Xiaoguang, 2018. "Integrated optimization of traffic signals and vehicle trajectories at isolated urban intersections," Transportation Research Part B: Methodological, Elsevier, vol. 112(C), pages 89-112.
    15. Lee, Seunghyeon & Wong, S.C., 2017. "Group-based approach to predictive delay model based on incremental queue accumulations for adaptive traffic control systems," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 1-20.
    16. Choi, T.S. & To, Kiwing & Wong, K.Y. Michael, 2024. "The dynamics of traffic congestion: Data from a freeway Electronic Toll Collection system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    17. Zhang, Lele & Garoni, Timothy M & de Gier, Jan, 2013. "A comparative study of Macroscopic Fundamental Diagrams of arterial road networks governed by adaptive traffic signal systems," Transportation Research Part B: Methodological, Elsevier, vol. 49(C), pages 1-23.
    18. Kenneth Small, 2015. "The Bottleneck Model: An Assessment and Interpretation," Working Papers 141506, University of California-Irvine, Department of Economics.
    19. Lo, Hong K., 1999. "A novel traffic signal control formulation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(6), pages 433-448, August.
    20. Dantsuji, Takao & Takayama, Yuki & Fukuda, Daisuke, 2023. "Perimeter control in a mixed bimodal bathtub model," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 267-291.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:45:y:2011:i:5:p:769-781. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.