IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v8y2020i8p1368-d399573.html
   My bibliography  Save this article

Lane-Based Traffic Signal Simulation and Optimization for Preventing Overflow

Author

Listed:
  • Chi-kwong Wong

    (Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, 852 Kowloon, Hong Kong, China)

  • Yiu-yin Lee

    (Department of Architecture and Civil Engineering, City University of Hong Kong, Tat Chee Avenue, 852 Kowloon, Hong Kong, China)

Abstract

In the lane-based signal optimization model, permitted turn directions in the form of lane markings that guide road users to turn at an intersection are optimized with traffic signal settings. The spatial queue requirements of approach lanes should be considered to avoid the overdesigning of the cycle, effective red, and effective green durations. The point-queue system employed in the conventional modeling approach is unrealistic in many practical situations. Overflow conditions cannot be modeled accurately, while vehicle queues are accumulated that block back upstream intersections. In a previous study, a method was developed to manually refine the traffic signal settings by using the results of lane-based optimization. However, the method was inefficient. In the present study, new design constraint sets are proposed to control the effective red and effective green durations, such that traffic enters the road lanes without overflow. The reduced cycle times discharge the accumulated vehicles more frequently. Moreover, queue spillback and residual queues can be avoided. One of the most complicated four-arm intersections in Hong Kong is considered as a case study for demonstration. The existing traffic signal settings are ineffective for controlling the observed traffic demand, and overflow occurs in short lanes. The optimized traffic signal settings applied to the proposed optimization algorithm effectively avoided traffic overflow. The resultant queuing dynamics are simulated using TRANSYT 15 Cell Transmission Model (CTM) to verify the proposed model. The model application is extended to handle the difficult residual queue scenario. It is found that the proposed model can optimize the traffic signal settings in cases where there are short initial residual queues.

Suggested Citation

  • Chi-kwong Wong & Yiu-yin Lee, 2020. "Lane-Based Traffic Signal Simulation and Optimization for Preventing Overflow," Mathematics, MDPI, vol. 8(8), pages 1-28, August.
  • Handle: RePEc:gam:jmathe:v:8:y:2020:i:8:p:1368-:d:399573
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/8/8/1368/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/8/8/1368/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alonso, Borja & Ibeas, Ángel & Musolino, Giuseppe & Rindone, Corrado & Vitetta, Antonino, 2019. "Effects of traffic control regulation on Network Macroscopic Fundamental Diagram: A statistical analysis of real data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 136-151.
    2. Wong, S. C., 1996. "Group-based optimisation of signal timings using the TRANSYT traffic model," Transportation Research Part B: Methodological, Elsevier, vol. 30(3), pages 217-244, June.
    3. Wong, C.K. & Heydecker, B.G., 2011. "Optimal allocation of turns to lanes at an isolated signal-controlled junction," Transportation Research Part B: Methodological, Elsevier, vol. 45(4), pages 667-681, May.
    4. Daganzo, Carlos F., 1994. "The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory," Transportation Research Part B: Methodological, Elsevier, vol. 28(4), pages 269-287, August.
    5. Hong K. Lo, 2001. "A Cell-Based Traffic Control Formulation: Strategies and Benefits of Dynamic Timing Plans," Transportation Science, INFORMS, vol. 35(2), pages 148-164, May.
    6. C. K. Wong & Yi Liu, 2017. "Lane-Based Optimization for Macroscopic Network Configuration Designs," Discrete Dynamics in Nature and Society, Hindawi, vol. 2017, pages 1-18, July.
    7. Lo, Hong K. & Chang, Elbert & Chan, Yiu Cho, 2001. "Dynamic network traffic control," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(8), pages 721-744, September.
    8. Daganzo, Carlos F., 1995. "The cell transmission model, part II: Network traffic," Transportation Research Part B: Methodological, Elsevier, vol. 29(2), pages 79-93, April.
    9. Wong, C. K. & Wong, S. C., 2003. "Lane-based optimization of signal timings for isolated junctions," Transportation Research Part B: Methodological, Elsevier, vol. 37(1), pages 63-84, January.
    10. Gallivan, Stephen & Heydecker, Benjamin, 1988. "Optimising the control performance of traffic signals at a single junction," Transportation Research Part B: Methodological, Elsevier, vol. 22(5), pages 357-370, October.
    11. Lo, Hong K., 1999. "A novel traffic signal control formulation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 33(6), pages 433-448, August.
    12. Silcock, J. P., 1997. "Designing signal-controlled junctions for group-based operation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 31(2), pages 157-173, March.
    13. Improta, G. & Cantarella, G. E., 1984. "Control system design for an individual signalized junction," Transportation Research Part B: Methodological, Elsevier, vol. 18(2), pages 147-167, April.
    14. C K Wong & Yi Liu, 2019. "Optimization of signalized network configurations using the Lane-based method," PLOS ONE, Public Library of Science, vol. 14(6), pages 1-36, June.
    15. Malachy Carey & Chandra Balijepalli & David Watling, 2015. "Extending the Cell Transmission Model to Multiple Lanes and Lane-Changing," Networks and Spatial Economics, Springer, vol. 15(3), pages 507-535, September.
    16. Daganzo, Carlos F., 1995. "A finite difference approximation of the kinematic wave model of traffic flow," Transportation Research Part B: Methodological, Elsevier, vol. 29(4), pages 261-276, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krasimira Stoilova & Todor Stoilov, 2023. "Optimizing Traffic Light Green Duration under Stochastic Considerations," Mathematics, MDPI, vol. 11(3), pages 1-25, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohebifard, Rasool & Hajbabaie, Ali, 2019. "Optimal network-level traffic signal control: A benders decomposition-based solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 252-274.
    2. Yu, Chunhui & Ma, Wanjing & Yang, Xiaoguang, 2020. "A time-slot based signal scheme model for fixed-time control at isolated intersections," Transportation Research Part B: Methodological, Elsevier, vol. 140(C), pages 176-192.
    3. Lee, Seunghyeon & Wong, S.C. & Varaiya, Pravin, 2017. "Group-based hierarchical adaptive traffic-signal control part I: Formulation," Transportation Research Part B: Methodological, Elsevier, vol. 105(C), pages 1-18.
    4. Islam, Tarikul & Vu, Hai L. & Hoang, Nam H. & Cricenti, Antonio, 2018. "A linear bus rapid transit with transit signal priority formulation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 163-184.
    5. Chow, Andy H.F. & Lo, Hong K., 2007. "Sensitivity analysis of signal control with physical queuing: Delay derivatives and an application," Transportation Research Part B: Methodological, Elsevier, vol. 41(4), pages 462-477, May.
    6. Memoli, Silvio & Cantarella, Giulio E. & de Luca, Stefano & Pace, Roberta Di, 2017. "Network signal setting design with stage sequence optimisation," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 20-42.
    7. Wang, Peirong (Slade) & Li, Pengfei (Taylor) & Chowdhury, Farzana R. & Zhang, Li & Zhou, Xuesong, 2020. "A mixed integer programming formulation and scalable solution algorithms for traffic control coordination across multiple intersections based on vehicle space-time trajectories," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 266-304.
    8. Yan, Chiwei & Jiang, Hai & Xie, Siyang, 2014. "Capacity optimization of an isolated intersection under the phase swap sorting strategy," Transportation Research Part B: Methodological, Elsevier, vol. 60(C), pages 85-106.
    9. Chou, Chang-Chi & Chiang, Wen-Chu & Chen, Albert Y., 2022. "Emergency medical response in mass casualty incidents considering the traffic congestions in proximity on-site and hospital delays," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    10. Wong, C. K. & Wong, S. C., 2003. "Lane-based optimization of signal timings for isolated junctions," Transportation Research Part B: Methodological, Elsevier, vol. 37(1), pages 63-84, January.
    11. Wang, Yi & Szeto, W.Y. & Han, Ke & Friesz, Terry L., 2018. "Dynamic traffic assignment: A review of the methodological advances for environmentally sustainable road transportation applications," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 370-394.
    12. Li, Pengfei & Mirchandani, Pitu & Zhou, Xuesong, 2015. "Solving simultaneous route guidance and traffic signal optimization problem using space-phase-time hypernetwork," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 103-130.
    13. Xuan, Yiguang & Daganzo, Carlos F. & Cassidy, Michael J., 2011. "Increasing the capacity of signalized intersections with separate left turn phases," Transportation Research Part B: Methodological, Elsevier, vol. 45(5), pages 769-781, June.
    14. Huanping Li & Jian Wang & Guopeng Bai & Xiaowei Hu, 2021. "Exploring the Distribution of Traffic Flow for Shared Human and Autonomous Vehicle Roads," Energies, MDPI, vol. 14(12), pages 1-21, June.
    15. Georgia Perakis & Guillaume Roels, 2006. "An Analytical Model for Traffic Delays and the Dynamic User Equilibrium Problem," Operations Research, INFORMS, vol. 54(6), pages 1151-1171, December.
    16. Kontorinaki, Maria & Spiliopoulou, Anastasia & Roncoli, Claudio & Papageorgiou, Markos, 2017. "First-order traffic flow models incorporating capacity drop: Overview and real-data validation," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 52-75.
    17. Yannis Pavlis & Will Recker, 2009. "A Mathematical Logic Approach for the Transformation of the Linear Conditional Piecewise Functions of Dispersion-and-Store and Cell Transmission Traffic Flow Models into Linear Mixed-Integer Form," Transportation Science, INFORMS, vol. 43(1), pages 98-116, February.
    18. Malachy Carey & Paul Humphreys & Marie McHugh & Ronan McIvor, 2018. "Consistency and Inconsistency Between the Fundamental Relationships on Which Different Traffic Assignment Models Are Based," Service Science, INFORMS, vol. 52(6), pages 1548-1569, December.
    19. Flötteröd, G. & Osorio, C., 2017. "Stochastic network link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 180-209.
    20. Flötteröd, Gunnar & Rohde, Jannis, 2011. "Operational macroscopic modeling of complex urban road intersections," Transportation Research Part B: Methodological, Elsevier, vol. 45(6), pages 903-922, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:8:y:2020:i:8:p:1368-:d:399573. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.