IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v78y2010i2p77-92.html
   My bibliography  Save this article

A coalescent dual process in a Moran model with genic selection, and the lambda coalescent limit

Author

Listed:
  • Etheridge, Alison M.
  • Griffiths, Robert C.
  • Taylor, Jesse E.

Abstract

The genealogical structure of neutral populations in which reproductive success is highly-skewed has been the subject of many recent studies. Here we derive a coalescent dual process for a related class of continuous-time Moran models with viability selection. In these models, individuals can give birth to multiple offspring whose survival depends on both the parental genotype and the brood size. This extends the dual process construction for a multi-type Moran model with genic selection described in Etheridge and Griffiths (2009). We show that in the limit of infinite population size the non-neutral Moran models converge to a Markov jump process which we call the Λ-Fleming–Viot process with viability selection and we derive a coalescent dual for this process directly from the generator and as a limit from the Moran models. The dual is a branching-coalescing process similar to the Ancestral Selection Graph which follows the typed ancestry of genes backwards in time with real and virtual lineages. As an application, the transition functions of the non-neutral Moran and Λ-coalescent models are expressed as mixtures of the transition functions of the dual process.

Suggested Citation

  • Etheridge, Alison M. & Griffiths, Robert C. & Taylor, Jesse E., 2010. "A coalescent dual process in a Moran model with genic selection, and the lambda coalescent limit," Theoretical Population Biology, Elsevier, vol. 78(2), pages 77-92.
  • Handle: RePEc:eee:thpobi:v:78:y:2010:i:2:p:77-92
    DOI: 10.1016/j.tpb.2010.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S004058091000047X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2010.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matthew Stephens & Peter Donnelly, 2003. "Ancestral Inference in Population Genetics Models with Selection (with Discussion)," Australian & New Zealand Journal of Statistics, Australian Statistical Publishing Association Inc., vol. 45(4), pages 395-430, December.
    2. Durrett, Rick & Schweinsberg, Jason, 2005. "A coalescent model for the effect of advantageous mutations on the genealogy of a population," Stochastic Processes and their Applications, Elsevier, vol. 115(10), pages 1628-1657, October.
    3. Schweinsberg, Jason, 2003. "Coalescent processes obtained from supercritical Galton-Watson processes," Stochastic Processes and their Applications, Elsevier, vol. 106(1), pages 107-139, July.
    4. Etheridge, A.M. & Griffiths, R.C., 2009. "A coalescent dual process in a Moran model with genic selection," Theoretical Population Biology, Elsevier, vol. 75(4), pages 320-330.
    5. Sargsyan, Ori & Wakeley, John, 2008. "A coalescent process with simultaneous multiple mergers for approximating the gene genealogies of many marine organisms," Theoretical Population Biology, Elsevier, vol. 74(1), pages 104-114.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Möhle, Martin, 2024. "On multi-type Cannings models and multi-type exchangeable coalescents," Theoretical Population Biology, Elsevier, vol. 156(C), pages 103-116.
    2. Der, Ricky & Epstein, Charles L. & Plotkin, Joshua B., 2011. "Generalized population models and the nature of genetic drift," Theoretical Population Biology, Elsevier, vol. 80(2), pages 80-99.
    3. Kon Kam King, Guillaume & Pandolfi, Andrea & Piretto, Marco & Ruggiero, Matteo, 2024. "Approximate filtering via discrete dual processes," Stochastic Processes and their Applications, Elsevier, vol. 168(C).
    4. Bjarki Eldon, 2023. "Viability Selection at Linked Sites," Mathematics, MDPI, vol. 11(3), pages 1-23, January.
    5. Griffiths, Robert C. & Jenkins, Paul A. & Lessard, Sabin, 2016. "A coalescent dual process for a Wright–Fisher diffusion with recombination and its application to haplotype partitioning," Theoretical Population Biology, Elsevier, vol. 112(C), pages 126-138.
    6. Desai, Michael M. & Nicolaisen, Lauren E. & Walczak, Aleksandra M. & Plotkin, Joshua B., 2012. "The structure of allelic diversity in the presence of purifying selection," Theoretical Population Biology, Elsevier, vol. 81(2), pages 144-157.
    7. Koskela, Jere & Šatuszyński, Krzysztof & Spanò, Dario, 2024. "Bernoulli factories and duality in Wright–Fisher and Allen–Cahn models of population genetics," Theoretical Population Biology, Elsevier, vol. 156(C), pages 40-45.
    8. Malaguti, Giulia & Singh, Param Priya & Isambert, Hervé, 2014. "On the retention of gene duplicates prone to dominant deleterious mutations," Theoretical Population Biology, Elsevier, vol. 93(C), pages 38-51.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eldon, Bjarki, 2011. "Estimation of parameters in large offspring number models and ratios of coalescence times," Theoretical Population Biology, Elsevier, vol. 80(1), pages 16-28.
    2. Blath, Jochen & Cronjäger, Mathias Christensen & Eldon, Bjarki & Hammer, Matthias, 2016. "The site-frequency spectrum associated with Ξ-coalescents," Theoretical Population Biology, Elsevier, vol. 110(C), pages 36-50.
    3. Bjarki Eldon, 2023. "Viability Selection at Linked Sites," Mathematics, MDPI, vol. 11(3), pages 1-23, January.
    4. Hobolth, Asger & Siri-Jégousse, Arno & Bladt, Mogens, 2019. "Phase-type distributions in population genetics," Theoretical Population Biology, Elsevier, vol. 127(C), pages 16-32.
    5. Eldon, Bjarki & Stephan, Wolfgang, 2018. "Evolution of highly fecund haploid populations," Theoretical Population Biology, Elsevier, vol. 119(C), pages 48-56.
    6. Steinrücken, Matthias & Birkner, Matthias & Blath, Jochen, 2013. "Analysis of DNA sequence variation within marine species using Beta-coalescents," Theoretical Population Biology, Elsevier, vol. 87(C), pages 15-24.
    7. Der, Ricky & Epstein, Charles L. & Plotkin, Joshua B., 2011. "Generalized population models and the nature of genetic drift," Theoretical Population Biology, Elsevier, vol. 80(2), pages 80-99.
    8. Eldon, Bjarki & Degnan, James H., 2012. "Multiple merger gene genealogies in two species: Monophyly, paraphyly, and polyphyly for two examples of Lambda coalescents," Theoretical Population Biology, Elsevier, vol. 82(2), pages 117-130.
    9. Griffiths, Robert C. & Jenkins, Paul A. & Lessard, Sabin, 2016. "A coalescent dual process for a Wright–Fisher diffusion with recombination and its application to haplotype partitioning," Theoretical Population Biology, Elsevier, vol. 112(C), pages 126-138.
    10. Möhle, Martin, 2024. "On multi-type Cannings models and multi-type exchangeable coalescents," Theoretical Population Biology, Elsevier, vol. 156(C), pages 103-116.
    11. Freund, Fabian & Siri-Jégousse, Arno, 2021. "The impact of genetic diversity statistics on model selection between coalescents," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    12. Eldon, Bjarki, 2009. "Structured coalescent processes from a modified Moran model with large offspring numbers," Theoretical Population Biology, Elsevier, vol. 76(2), pages 92-104.
    13. Dhersin, Jean-Stéphane & Freund, Fabian & Siri-Jégousse, Arno & Yuan, Linglong, 2013. "On the length of an external branch in the Beta-coalescent," Stochastic Processes and their Applications, Elsevier, vol. 123(5), pages 1691-1715.
    14. Mikula, Lynette Caitlin & Vogl, Claus, 2024. "The expected sample allele frequencies from populations of changing size via orthogonal polynomials," Theoretical Population Biology, Elsevier, vol. 157(C), pages 55-85.
    15. Hobolth, Asger & Rivas-González, Iker & Bladt, Mogens & Futschik, Andreas, 2024. "Phase-type distributions in mathematical population genetics: An emerging framework," Theoretical Population Biology, Elsevier, vol. 157(C), pages 14-32.
    16. Vogl, Claus & Bergman, Juraj, 2015. "Inference of directional selection and mutation parameters assuming equilibrium," Theoretical Population Biology, Elsevier, vol. 106(C), pages 71-82.
    17. Huillet, Thierry & Möhle, Martin, 2013. "On the extended Moran model and its relation to coalescents with multiple collisions," Theoretical Population Biology, Elsevier, vol. 87(C), pages 5-14.
    18. Vogl, Claus & Clemente, Florian, 2012. "The allele-frequency spectrum in a decoupled Moran model with mutation, drift, and directional selection, assuming small mutation rates," Theoretical Population Biology, Elsevier, vol. 81(3), pages 197-209.
    19. Desai, Michael M. & Nicolaisen, Lauren E. & Walczak, Aleksandra M. & Plotkin, Joshua B., 2012. "The structure of allelic diversity in the presence of purifying selection," Theoretical Population Biology, Elsevier, vol. 81(2), pages 144-157.
    20. Birkner, Matthias & Blath, Jochen & Steinrücken, Matthias, 2011. "Importance sampling for Lambda-coalescents in the infinitely many sites model," Theoretical Population Biology, Elsevier, vol. 79(4), pages 155-173.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:78:y:2010:i:2:p:77-92. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.