IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v158y2024icp1-20.html
   My bibliography  Save this article

Latent mutations in the ancestries of alleles under selection

Author

Listed:
  • Fan, Wai-Tong (Louis)
  • Wakeley, John

Abstract

We consider a single genetic locus with two alleles A1 and A2 in a large haploid population. The locus is subject to selection and two-way, or recurrent, mutation. Assuming the allele frequencies follow a Wright–Fisher diffusion and have reached stationarity, we describe the asymptotic behaviors of the conditional gene genealogy and the latent mutations of a sample with known allele counts, when the count n1 of allele A1 is fixed, and when either or both the sample size n and the selection strength |α| tend to infinity. Our study extends previous work under neutrality to the case of non-neutral rare alleles, asserting that when selection is not too strong relative to the sample size, even if it is strongly positive or strongly negative in the usual sense (α→−∞ or α→+∞), the number of latent mutations of the n1 copies of allele A1 follows the same distribution as the number of alleles in the Ewens sampling formula. On the other hand, very strong positive selection relative to the sample size leads to neutral gene genealogies with a single ancient latent mutation. We also demonstrate robustness of our asymptotic results against changing population sizes, when one of |α| or n is large.

Suggested Citation

  • Fan, Wai-Tong (Louis) & Wakeley, John, 2024. "Latent mutations in the ancestries of alleles under selection," Theoretical Population Biology, Elsevier, vol. 158(C), pages 1-20.
  • Handle: RePEc:eee:thpobi:v:158:y:2024:i:c:p:1-20
    DOI: 10.1016/j.tpb.2024.04.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580924000418
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2024.04.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matthew Stephens & Peter Donnelly, 2003. "Ancestral Inference in Population Genetics Models with Selection (with Discussion)," Australian & New Zealand Journal of Statistics, Australian Statistical Publishing Association Inc., vol. 45(4), pages 395-430, December.
    2. Hallatschek, Oskar & Nelson, David R., 2008. "Gene surfing in expanding populations," Theoretical Population Biology, Elsevier, vol. 73(1), pages 158-170.
    3. Juba Nait Saada & Georgios Kalantzis & Derek Shyr & Fergus Cooper & Martin Robinson & Alexander Gusev & Pier Francesco Palamara, 2020. "Identity-by-descent detection across 487,409 British samples reveals fine scale population structure and ultra-rare variant associations," Nature Communications, Nature, vol. 11(1), pages 1-15, December.
    4. Noah Dukler & Mehreen R. Mughal & Ritika Ramani & Yi-Fei Huang & Adam Siepel, 2022. "Extreme purifying selection against point mutations in the human genome," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Foutel-Rodier, Félix & Etheridge, Alison M., 2020. "The spatial Muller’s ratchet: Surfing of deleterious mutations during range expansion," Theoretical Population Biology, Elsevier, vol. 135(C), pages 19-31.
    2. Romain Fournier & Zoi Tsangalidou & David Reich & Pier Francesco Palamara, 2023. "Haplotype-based inference of recent effective population size in modern and ancient DNA samples," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Louvet, Apolline, 2022. "Extinction threshold and large population limit of a plant metapopulation model with recurrent extinction events and a seed bank component," Theoretical Population Biology, Elsevier, vol. 145(C), pages 22-37.
    4. Victor Lopez Soriano & Alfredo Dueñas Rey & Rajarshi Mukherjee & Frauke Coppieters & Miriam Bauwens & Andy Willaert & Elfride De Baere, 2024. "Multi-omics analysis in human retina uncovers ultraconserved cis-regulatory elements at rare eye disease loci," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    5. Wakeley, John & Sargsyan, Ori, 2009. "The conditional ancestral selection graph with strong balancing selection," Theoretical Population Biology, Elsevier, vol. 75(4), pages 355-364.
    6. John Keele & Tara McDaneld & Ty Lawrence & Jenny Jennings & Larry Kuehn, 2021. "Estimation of Pool Construction and Technical Error," Agriculture, MDPI, vol. 11(11), pages 1-11, November.
    7. Bing Guo & Victor Borda & Roland Laboulaye & Michele D. Spring & Mariusz Wojnarski & Brian A. Vesely & Joana C. Silva & Norman C. Waters & Timothy D. O’Connor & Shannon Takala-Harrison, 2024. "Strong positive selection biases identity-by-descent-based inferences of recent demography and population structure in Plasmodium falciparum," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    8. Griffiths, Robert C. & Jenkins, Paul A. & Lessard, Sabin, 2016. "A coalescent dual process for a Wright–Fisher diffusion with recombination and its application to haplotype partitioning," Theoretical Population Biology, Elsevier, vol. 112(C), pages 126-138.
    9. Kajántó, Sándor & Néda, Zoltán, 2018. "Universality in the coarse-grained fluctuations for a class of linear dynamical systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 215-220.
    10. Etheridge, Alison M. & Griffiths, Robert C. & Taylor, Jesse E., 2010. "A coalescent dual process in a Moran model with genic selection, and the lambda coalescent limit," Theoretical Population Biology, Elsevier, vol. 78(2), pages 77-92.
    11. Yuri V. Tyutyunov, 2023. "Spatial Demo-Genetic Predator–Prey Model for Studying Natural Selection of Traits Enhancing Consumer Motility," Mathematics, MDPI, vol. 11(15), pages 1-18, August.
    12. Paula Villa Martín & Miguel A Muñoz & Simone Pigolotti, 2019. "Bet-hedging strategies in expanding populations," PLOS Computational Biology, Public Library of Science, vol. 15(4), pages 1-17, April.
    13. Máté, Gabriell & Néda, Zoltán, 2016. "The advantage of inhomogeneity — Lessons from a noise driven linearized dynamical system," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 445(C), pages 310-317.
    14. Goodsman, Devin W. & Cooke, Barry & Coltman, David W. & Lewis, Mark A., 2014. "The genetic signature of rapid range expansions: How dispersal, growth and invasion speed impact heterozygosity and allele surfing," Theoretical Population Biology, Elsevier, vol. 98(C), pages 1-10.
    15. Wakano, Joe Y. & Kawasaki, Kohkichi & Shigesada, Nanako & Aoki, Kenichi, 2011. "Coexistence of individual and social learners during range expansion," Theoretical Population Biology, Elsevier, vol. 80(2), pages 132-140.
    16. Jun Wang & Meng Wang & Ala Moshiri & R. Alan Harris & Muthuswamy Raveendran & Tracy Nguyen & Soohyun Kim & Laura Young & Keqing Wang & Roger Wiseman & David H. O’Connor & Zach Johnson & Melween Martin, 2024. "Genetic diversity of 1,845 rhesus macaques improves genetic variation interpretation and identifies disease models," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    17. Barton, N.H. & Etheridge, A.M. & Kelleher, J. & Véber, A., 2013. "Genetic hitchhiking in spatially extended populations," Theoretical Population Biology, Elsevier, vol. 87(C), pages 75-89.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:158:y:2024:i:c:p:1-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.