IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v112y2016icp126-138.html
   My bibliography  Save this article

A coalescent dual process for a Wright–Fisher diffusion with recombination and its application to haplotype partitioning

Author

Listed:
  • Griffiths, Robert C.
  • Jenkins, Paul A.
  • Lessard, Sabin

Abstract

Duality plays an important role in population genetics. It can relate results from forwards-in-time models of allele frequency evolution with those of backwards-in-time genealogical models; a well known example is the duality between the Wright–Fisher diffusion for genetic drift and its genealogical counterpart, the coalescent. There have been a number of articles extending this relationship to include other evolutionary processes such as mutation and selection, but little has been explored for models also incorporating crossover recombination. Here, we derive from first principles a new genealogical process which is dual to a Wright–Fisher diffusion model of drift, mutation, and recombination. The process is reminiscent of the ancestral recombination graph, a widely-used multilocus genealogical model, but here ancestral lineages are typed and transition rates are regarded as being conditioned on an observed configuration at the leaves of the genealogy. Our approach is based on expressing a putative duality relationship between two models via their infinitesimal generators, and then seeking an appropriate test function to ensure the validity of the duality equation. This approach is quite general, and we use it to find dualities for several important variants, including both a discrete L-locus model of a gene and a continuous model in which mutation and recombination events are scattered along the gene according to continuous distributions. As an application of our results, we derive a series expansion for the transition function of the diffusion. Finally, we study in further detail the case in which mutation is absent. Then the dual process describes the dispersal of ancestral genetic material across the ancestors of a sample. The stationary distribution of this process is of particular interest; we show how duality relates this distribution to haplotype fixation probabilities. We develop an efficient method for computing such probabilities in multilocus models.

Suggested Citation

  • Griffiths, Robert C. & Jenkins, Paul A. & Lessard, Sabin, 2016. "A coalescent dual process for a Wright–Fisher diffusion with recombination and its application to haplotype partitioning," Theoretical Population Biology, Elsevier, vol. 112(C), pages 126-138.
  • Handle: RePEc:eee:thpobi:v:112:y:2016:i:c:p:126-138
    DOI: 10.1016/j.tpb.2016.08.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580916300491
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2016.08.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matthew Stephens & Peter Donnelly, 2003. "Ancestral Inference in Population Genetics Models with Selection (with Discussion)," Australian & New Zealand Journal of Statistics, Australian Statistical Publishing Association Inc., vol. 45(4), pages 395-430, December.
    2. Etheridge, A.M. & Griffiths, R.C., 2009. "A coalescent dual process in a Moran model with genic selection," Theoretical Population Biology, Elsevier, vol. 75(4), pages 320-330.
    3. Larribe Fabrice & Lessard Sabin, 2008. "A Composite-Conditional-Likelihood Approach for Gene Mapping Based on Linkage Disequilibrium in Windows of Marker Loci," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-33, August.
    4. Etheridge, Alison M. & Griffiths, Robert C. & Taylor, Jesse E., 2010. "A coalescent dual process in a Moran model with genic selection, and the lambda coalescent limit," Theoretical Population Biology, Elsevier, vol. 78(2), pages 77-92.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Desai, Michael M. & Nicolaisen, Lauren E. & Walczak, Aleksandra M. & Plotkin, Joshua B., 2012. "The structure of allelic diversity in the presence of purifying selection," Theoretical Population Biology, Elsevier, vol. 81(2), pages 144-157.
    2. Malaguti, Giulia & Singh, Param Priya & Isambert, Hervé, 2014. "On the retention of gene duplicates prone to dominant deleterious mutations," Theoretical Population Biology, Elsevier, vol. 93(C), pages 38-51.
    3. Der, Ricky & Epstein, Charles L. & Plotkin, Joshua B., 2011. "Generalized population models and the nature of genetic drift," Theoretical Population Biology, Elsevier, vol. 80(2), pages 80-99.
    4. Etheridge, Alison M. & Griffiths, Robert C. & Taylor, Jesse E., 2010. "A coalescent dual process in a Moran model with genic selection, and the lambda coalescent limit," Theoretical Population Biology, Elsevier, vol. 78(2), pages 77-92.
    5. Möhle, Martin, 2024. "On multi-type Cannings models and multi-type exchangeable coalescents," Theoretical Population Biology, Elsevier, vol. 156(C), pages 103-116.
    6. Kon Kam King, Guillaume & Pandolfi, Andrea & Piretto, Marco & Ruggiero, Matteo, 2024. "Approximate filtering via discrete dual processes," Stochastic Processes and their Applications, Elsevier, vol. 168(C).
    7. Mikula, Lynette Caitlin & Vogl, Claus, 2024. "The expected sample allele frequencies from populations of changing size via orthogonal polynomials," Theoretical Population Biology, Elsevier, vol. 157(C), pages 55-85.
    8. Vogl, Claus & Bergman, Juraj, 2015. "Inference of directional selection and mutation parameters assuming equilibrium," Theoretical Population Biology, Elsevier, vol. 106(C), pages 71-82.
    9. Vogl, Claus & Clemente, Florian, 2012. "The allele-frequency spectrum in a decoupled Moran model with mutation, drift, and directional selection, assuming small mutation rates," Theoretical Population Biology, Elsevier, vol. 81(3), pages 197-209.
    10. Burden, Conrad J. & Tang, Yurong, 2017. "Rate matrix estimation from site frequency data," Theoretical Population Biology, Elsevier, vol. 113(C), pages 23-33.
    11. Frank Hollander & Shubhamoy Nandan, 2022. "Spatially Inhomogeneous Populations with Seed-Banks: I. Duality, Existence and Clustering," Journal of Theoretical Probability, Springer, vol. 35(3), pages 1795-1841, September.
    12. Wakeley, John & Sargsyan, Ori, 2009. "The conditional ancestral selection graph with strong balancing selection," Theoretical Population Biology, Elsevier, vol. 75(4), pages 355-364.
    13. Corujo, Josué, 2021. "Dynamics of a Fleming–Viot type particle system on the cycle graph," Stochastic Processes and their Applications, Elsevier, vol. 136(C), pages 57-91.
    14. Griffiths, Robert C. & Jenkins, Paul A. & Spanò, Dario, 2018. "Wright–Fisher diffusion bridges," Theoretical Population Biology, Elsevier, vol. 122(C), pages 67-77.
    15. Hössjer Ola & Hartman Linda & Humphreys Keith, 2009. "Ancestral Recombination Graphs under Non-Random Ascertainment, with Applications to Gene Mapping," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-46, September.
    16. Koskela, Jere & Šatuszyński, Krzysztof & Spanò, Dario, 2024. "Bernoulli factories and duality in Wright–Fisher and Allen–Cahn models of population genetics," Theoretical Population Biology, Elsevier, vol. 156(C), pages 40-45.
    17. Lenz, Ute & Kluth, Sandra & Baake, Ellen & Wakolbinger, Anton, 2015. "Looking down in the ancestral selection graph: A probabilistic approach to the common ancestor type distribution," Theoretical Population Biology, Elsevier, vol. 103(C), pages 27-37.
    18. Vogl, Claus & Mikula, Lynette C. & Burden, Conrad J., 2020. "Maximum likelihood estimators for scaled mutation rates in an equilibrium mutation–drift model," Theoretical Population Biology, Elsevier, vol. 134(C), pages 106-118.
    19. Jüri Lember & Chris Watkins, 2022. "An Evolutionary Model that Satisfies Detailed Balance," Methodology and Computing in Applied Probability, Springer, vol. 24(1), pages 1-37, March.
    20. Kenne Pagui, E.C. & Salvan, A. & Sartori, N., 2015. "On full efficiency of the maximum composite likelihood estimator," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 120-124.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:112:y:2016:i:c:p:126-138. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.