IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v75y2009i4p320-330.html
   My bibliography  Save this article

A coalescent dual process in a Moran model with genic selection

Author

Listed:
  • Etheridge, A.M.
  • Griffiths, R.C.

Abstract

A coalescent dual process for a multi-type Moran model with genic selection is derived using a generator approach. This leads to an expansion of the transition functions in the Moran model and the Wright–Fisher diffusion process limit in terms of the transition functions for the coalescent dual. A graphical representation of the Moran model (in the spirit of Harris) identifies the dual as a strong dual process following typed lines backwards in time. An application is made to the harmonic measure problem of finding the joint probability distribution of the time to the first loss of an allele from the population and the distribution of the surviving alleles at the time of loss. Our dual process mirrors the Ancestral Selection Graph of [Krone, S. M., Neuhauser, C., 1997. Ancestral processes with selection. Theoret. Popul. Biol. 51, 210–237; Neuhauser, C., Krone, S. M., 1997. The genealogy of samples in models with selection. Genetics 145, 519–534], which allows one to reconstruct the genealogy of a random sample from a population subject to genic selection. In our setting, we follow [Stephens, M., Donnelly, P., 2002. Ancestral inference in population genetics models with selection. Aust. N. Z. J. Stat. 45, 395–430] in assuming that the types of individuals in the sample are known. There are also close links to [Fearnhead, P., 2002. The common ancestor at a nonneutral locus. J. Appl. Probab. 39, 38–54]. However, our methods and applications are quite different. This work can also be thought of as extending a dual process construction in a Wright–Fisher diffusion in [Barbour, A.D., Ethier, S.N., Griffiths, R.C., 2000. A transition function expansion for a diffusion model with selection. Ann. Appl. Probab. 10, 123–162]. The application to the harmonic measure problem extends a construction provided in the setting of a neutral diffusion process model in [Ethier, S.N., Griffiths, R.C., 1991. Harmonic measure for random genetic drift. In: Pinsky, M.A. (Ed.), Diffusion Processes and Related Problems in Analysis, vol. 1. In: Progress in Probability Series, vol. 22, Birkhäuser, Boston, pp. 73–81].

Suggested Citation

  • Etheridge, A.M. & Griffiths, R.C., 2009. "A coalescent dual process in a Moran model with genic selection," Theoretical Population Biology, Elsevier, vol. 75(4), pages 320-330.
  • Handle: RePEc:eee:thpobi:v:75:y:2009:i:4:p:320-330
    DOI: 10.1016/j.tpb.2009.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580909000331
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2009.03.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mano, Shuhei, 2009. "Duality, ancestral and diffusion processes in models with selection," Theoretical Population Biology, Elsevier, vol. 75(2), pages 164-175.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jüri Lember & Chris Watkins, 2022. "An Evolutionary Model that Satisfies Detailed Balance," Methodology and Computing in Applied Probability, Springer, vol. 24(1), pages 1-37, March.
    2. Carinci, Gioia & Giardinà, Cristian & Giberti, Claudio & Redig, Frank, 2015. "Dualities in population genetics: A fresh look with new dualities," Stochastic Processes and their Applications, Elsevier, vol. 125(3), pages 941-969.
    3. Frank Hollander & Shubhamoy Nandan, 2022. "Spatially Inhomogeneous Populations with Seed-Banks: I. Duality, Existence and Clustering," Journal of Theoretical Probability, Springer, vol. 35(3), pages 1795-1841, September.
    4. Griffiths, Robert C. & Jenkins, Paul A. & Spanò, Dario, 2018. "Wright–Fisher diffusion bridges," Theoretical Population Biology, Elsevier, vol. 122(C), pages 67-77.
    5. Etheridge, Alison M. & Griffiths, Robert C. & Taylor, Jesse E., 2010. "A coalescent dual process in a Moran model with genic selection, and the lambda coalescent limit," Theoretical Population Biology, Elsevier, vol. 78(2), pages 77-92.
    6. Möhle, Martin, 2024. "On multi-type Cannings models and multi-type exchangeable coalescents," Theoretical Population Biology, Elsevier, vol. 156(C), pages 103-116.
    7. Corujo, Josué, 2021. "Dynamics of a Fleming–Viot type particle system on the cycle graph," Stochastic Processes and their Applications, Elsevier, vol. 136(C), pages 57-91.
    8. Der, Ricky & Epstein, Charles L. & Plotkin, Joshua B., 2011. "Generalized population models and the nature of genetic drift," Theoretical Population Biology, Elsevier, vol. 80(2), pages 80-99.
    9. Mikula, Lynette Caitlin & Vogl, Claus, 2024. "The expected sample allele frequencies from populations of changing size via orthogonal polynomials," Theoretical Population Biology, Elsevier, vol. 157(C), pages 55-85.
    10. Vogl, Claus & Clemente, Florian, 2012. "The allele-frequency spectrum in a decoupled Moran model with mutation, drift, and directional selection, assuming small mutation rates," Theoretical Population Biology, Elsevier, vol. 81(3), pages 197-209.
    11. Schrempf, Dominik & Hobolth, Asger, 2017. "An alternative derivation of the stationary distribution of the multivariate neutral Wright–Fisher model for low mutation rates with a view to mutation rate estimation from site frequency data," Theoretical Population Biology, Elsevier, vol. 114(C), pages 88-94.
    12. Kon Kam King, Guillaume & Pandolfi, Andrea & Piretto, Marco & Ruggiero, Matteo, 2024. "Approximate filtering via discrete dual processes," Stochastic Processes and their Applications, Elsevier, vol. 168(C).
    13. Griffiths, Robert C. & Jenkins, Paul A. & Lessard, Sabin, 2016. "A coalescent dual process for a Wright–Fisher diffusion with recombination and its application to haplotype partitioning," Theoretical Population Biology, Elsevier, vol. 112(C), pages 126-138.
    14. Desai, Michael M. & Nicolaisen, Lauren E. & Walczak, Aleksandra M. & Plotkin, Joshua B., 2012. "The structure of allelic diversity in the presence of purifying selection," Theoretical Population Biology, Elsevier, vol. 81(2), pages 144-157.
    15. Lenz, Ute & Kluth, Sandra & Baake, Ellen & Wakolbinger, Anton, 2015. "Looking down in the ancestral selection graph: A probabilistic approach to the common ancestor type distribution," Theoretical Population Biology, Elsevier, vol. 103(C), pages 27-37.
    16. Vogl, Claus & Bergman, Juraj, 2015. "Inference of directional selection and mutation parameters assuming equilibrium," Theoretical Population Biology, Elsevier, vol. 106(C), pages 71-82.
    17. Vogl, Claus & Mikula, Lynette Caitlin, 2021. "A nearly-neutral biallelic Moran model with biased mutation and linear and quadratic selection," Theoretical Population Biology, Elsevier, vol. 139(C), pages 1-17.
    18. Burden, Conrad J. & Tang, Yurong, 2017. "Rate matrix estimation from site frequency data," Theoretical Population Biology, Elsevier, vol. 113(C), pages 23-33.
    19. Malaguti, Giulia & Singh, Param Priya & Isambert, Hervé, 2014. "On the retention of gene duplicates prone to dominant deleterious mutations," Theoretical Population Biology, Elsevier, vol. 93(C), pages 38-51.
    20. Vogl, Claus & Mikula, Lynette C. & Burden, Conrad J., 2020. "Maximum likelihood estimators for scaled mutation rates in an equilibrium mutation–drift model," Theoretical Population Biology, Elsevier, vol. 134(C), pages 106-118.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cordero, Fernando, 2017. "Common ancestor type distribution: A Moran model and its deterministic limit," Stochastic Processes and their Applications, Elsevier, vol. 127(2), pages 590-621.
    2. Wakeley, John & Sargsyan, Ori, 2009. "The conditional ancestral selection graph with strong balancing selection," Theoretical Population Biology, Elsevier, vol. 75(4), pages 355-364.
    3. González Casanova, Adrián & Miró Pina, Verónica & Pardo, Juan Carlos, 2020. "The Wright–Fisher model with efficiency," Theoretical Population Biology, Elsevier, vol. 132(C), pages 33-46.
    4. Lenz, Ute & Kluth, Sandra & Baake, Ellen & Wakolbinger, Anton, 2015. "Looking down in the ancestral selection graph: A probabilistic approach to the common ancestor type distribution," Theoretical Population Biology, Elsevier, vol. 103(C), pages 27-37.
    5. Kobayashi, Yutaka & Wakano, Joe Yuichiro & Ohtsuki, Hisashi, 2018. "Genealogies and ages of cultural traits: An application of the theory of duality to the research on cultural evolution," Theoretical Population Biology, Elsevier, vol. 123(C), pages 18-27.
    6. Bossert, S. & Pfaffelhuber, P., 2018. "The fixation probability and time for a doubly beneficial mutant," Stochastic Processes and their Applications, Elsevier, vol. 128(12), pages 4018-4050.
    7. Kluth, Sandra & Baake, Ellen, 2013. "The Moran model with selection: Fixation probabilities, ancestral lines, and an alternative particle representation," Theoretical Population Biology, Elsevier, vol. 90(C), pages 104-112.
    8. Pokalyuk, Cornelia & Pfaffelhuber, Peter, 2013. "The ancestral selection graph under strong directional selection," Theoretical Population Biology, Elsevier, vol. 87(C), pages 25-33.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:75:y:2009:i:4:p:320-330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.