IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v74y2008i1p104-114.html
   My bibliography  Save this article

A coalescent process with simultaneous multiple mergers for approximating the gene genealogies of many marine organisms

Author

Listed:
  • Sargsyan, Ori
  • Wakeley, John

Abstract

We describe a forward-time haploid reproduction model with a constant population size that includes life history characteristics common to many marine organisms. We develop coalescent approximations for sample gene genealogies under this model and use these to predict patterns of genetic variation. Depending on the behavior of the underlying parameters of the model, the approximations are coalescent processes with simultaneous multiple mergers or Kingman’s coalescent. Using simulations, we apply our model to data from the Pacific oyster and show that our model predicts the observed data very well. We also show that a fact which holds for Kingman’s coalescent and also for general coalescent trees–that the most-frequent allele at a biallelic locus is likely to be the ancestral allele–is not true for our model. Our work suggests that the power to detect a “sweepstakes effect†in a sample of DNA sequences from marine organisms depends on the sample size.

Suggested Citation

  • Sargsyan, Ori & Wakeley, John, 2008. "A coalescent process with simultaneous multiple mergers for approximating the gene genealogies of many marine organisms," Theoretical Population Biology, Elsevier, vol. 74(1), pages 104-114.
  • Handle: RePEc:eee:thpobi:v:74:y:2008:i:1:p:104-114
    DOI: 10.1016/j.tpb.2008.04.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580908000580
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2008.04.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Durrett, Rick & Schweinsberg, Jason, 2005. "A coalescent model for the effect of advantageous mutations on the genealogy of a population," Stochastic Processes and their Applications, Elsevier, vol. 115(10), pages 1628-1657, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Etheridge, Alison M. & Griffiths, Robert C. & Taylor, Jesse E., 2010. "A coalescent dual process in a Moran model with genic selection, and the lambda coalescent limit," Theoretical Population Biology, Elsevier, vol. 78(2), pages 77-92.
    2. Eldon, Bjarki, 2009. "Structured coalescent processes from a modified Moran model with large offspring numbers," Theoretical Population Biology, Elsevier, vol. 76(2), pages 92-104.
    3. Eldon, Bjarki & Stephan, Wolfgang, 2018. "Evolution of highly fecund haploid populations," Theoretical Population Biology, Elsevier, vol. 119(C), pages 48-56.
    4. Barton, Nick & Sachdeva, Himani, 2024. "Limits to selection on standing variation in an asexual population," Theoretical Population Biology, Elsevier, vol. 157(C), pages 129-137.
    5. Paul F. Slade, 2018. "Linearization of the Kingman Coalescent," Mathematics, MDPI, vol. 6(5), pages 1-27, May.
    6. Eldon, Bjarki, 2011. "Estimation of parameters in large offspring number models and ratios of coalescence times," Theoretical Population Biology, Elsevier, vol. 80(1), pages 16-28.
    7. Bjarki Eldon, 2023. "Viability Selection at Linked Sites," Mathematics, MDPI, vol. 11(3), pages 1-23, January.
    8. Eldon, Bjarki & Degnan, James H., 2012. "Multiple merger gene genealogies in two species: Monophyly, paraphyly, and polyphyly for two examples of Lambda coalescents," Theoretical Population Biology, Elsevier, vol. 82(2), pages 117-130.
    9. Hobolth, Asger & Siri-Jégousse, Arno & Bladt, Mogens, 2019. "Phase-type distributions in population genetics," Theoretical Population Biology, Elsevier, vol. 127(C), pages 16-32.
    10. Blath, Jochen & Cronjäger, Mathias Christensen & Eldon, Bjarki & Hammer, Matthias, 2016. "The site-frequency spectrum associated with Ξ-coalescents," Theoretical Population Biology, Elsevier, vol. 110(C), pages 36-50.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Etheridge, Alison M. & Griffiths, Robert C. & Taylor, Jesse E., 2010. "A coalescent dual process in a Moran model with genic selection, and the lambda coalescent limit," Theoretical Population Biology, Elsevier, vol. 78(2), pages 77-92.
    2. Eldon, Bjarki, 2011. "Estimation of parameters in large offspring number models and ratios of coalescence times," Theoretical Population Biology, Elsevier, vol. 80(1), pages 16-28.
    3. Steinrücken, Matthias & Birkner, Matthias & Blath, Jochen, 2013. "Analysis of DNA sequence variation within marine species using Beta-coalescents," Theoretical Population Biology, Elsevier, vol. 87(C), pages 15-24.
    4. Blath, Jochen & Cronjäger, Mathias Christensen & Eldon, Bjarki & Hammer, Matthias, 2016. "The site-frequency spectrum associated with Ξ-coalescents," Theoretical Population Biology, Elsevier, vol. 110(C), pages 36-50.
    5. Freund, Fabian & Siri-Jégousse, Arno, 2021. "The impact of genetic diversity statistics on model selection between coalescents," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    6. Bjarki Eldon, 2023. "Viability Selection at Linked Sites," Mathematics, MDPI, vol. 11(3), pages 1-23, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:74:y:2008:i:1:p:104-114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.