IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v156y2024icp103-116.html
   My bibliography  Save this article

On multi-type Cannings models and multi-type exchangeable coalescents

Author

Listed:
  • Möhle, Martin

Abstract

A multi-type neutral Cannings population model with migration and fixed subpopulation sizes is analyzed. Under appropriate conditions, as all subpopulation sizes tend to infinity, the ancestral process, properly time-scaled, converges to a multi-type coalescent sharing the exchangeability and consistency property. The proof gains from coalescent theory for single-type Cannings models and from decompositions of transition probabilities into parts concerning reproduction and migration respectively. The following section deals with a different but closely related multi-type Cannings model with mutation and fixed total population size but stochastically varying subpopulation sizes. The latter model is analyzed forward and backward in time with an emphasis on its behavior as the total population size tends to infinity. Forward in time, multi-type limiting branching processes arise for large population size. Its backward structure and related open problems are briefly discussed.

Suggested Citation

  • Möhle, Martin, 2024. "On multi-type Cannings models and multi-type exchangeable coalescents," Theoretical Population Biology, Elsevier, vol. 156(C), pages 103-116.
  • Handle: RePEc:eee:thpobi:v:156:y:2024:i:c:p:103-116
    DOI: 10.1016/j.tpb.2024.02.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580924000145
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2024.02.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eldon, Bjarki, 2009. "Structured coalescent processes from a modified Moran model with large offspring numbers," Theoretical Population Biology, Elsevier, vol. 76(2), pages 92-104.
    2. Etheridge, Alison M. & Griffiths, Robert C. & Taylor, Jesse E., 2010. "A coalescent dual process in a Moran model with genic selection, and the lambda coalescent limit," Theoretical Population Biology, Elsevier, vol. 78(2), pages 77-92.
    3. Popovic, Lea & Rivas, Mariolys, 2014. "The coalescent point process of multi-type branching trees," Stochastic Processes and their Applications, Elsevier, vol. 124(12), pages 4120-4148.
    4. Schweinsberg, Jason, 2003. "Coalescent processes obtained from supercritical Galton-Watson processes," Stochastic Processes and their Applications, Elsevier, vol. 106(1), pages 107-139, July.
    5. Etheridge, A.M. & Griffiths, R.C., 2009. "A coalescent dual process in a Moran model with genic selection," Theoretical Population Biology, Elsevier, vol. 75(4), pages 320-330.
    6. Heuer, Benjamin & Sturm, Anja, 2013. "On spatial coalescents with multiple mergers in two dimensions," Theoretical Population Biology, Elsevier, vol. 87(C), pages 90-104.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Der, Ricky & Epstein, Charles L. & Plotkin, Joshua B., 2011. "Generalized population models and the nature of genetic drift," Theoretical Population Biology, Elsevier, vol. 80(2), pages 80-99.
    2. Malaguti, Giulia & Singh, Param Priya & Isambert, Hervé, 2014. "On the retention of gene duplicates prone to dominant deleterious mutations," Theoretical Population Biology, Elsevier, vol. 93(C), pages 38-51.
    3. Griffiths, Robert C. & Jenkins, Paul A. & Lessard, Sabin, 2016. "A coalescent dual process for a Wright–Fisher diffusion with recombination and its application to haplotype partitioning," Theoretical Population Biology, Elsevier, vol. 112(C), pages 126-138.
    4. Etheridge, Alison M. & Griffiths, Robert C. & Taylor, Jesse E., 2010. "A coalescent dual process in a Moran model with genic selection, and the lambda coalescent limit," Theoretical Population Biology, Elsevier, vol. 78(2), pages 77-92.
    5. Eldon, Bjarki, 2011. "Estimation of parameters in large offspring number models and ratios of coalescence times," Theoretical Population Biology, Elsevier, vol. 80(1), pages 16-28.
    6. Desai, Michael M. & Nicolaisen, Lauren E. & Walczak, Aleksandra M. & Plotkin, Joshua B., 2012. "The structure of allelic diversity in the presence of purifying selection," Theoretical Population Biology, Elsevier, vol. 81(2), pages 144-157.
    7. Eldon, Bjarki & Degnan, James H., 2012. "Multiple merger gene genealogies in two species: Monophyly, paraphyly, and polyphyly for two examples of Lambda coalescents," Theoretical Population Biology, Elsevier, vol. 82(2), pages 117-130.
    8. Blath, Jochen & Cronjäger, Mathias Christensen & Eldon, Bjarki & Hammer, Matthias, 2016. "The site-frequency spectrum associated with Ξ-coalescents," Theoretical Population Biology, Elsevier, vol. 110(C), pages 36-50.
    9. Kon Kam King, Guillaume & Pandolfi, Andrea & Piretto, Marco & Ruggiero, Matteo, 2024. "Approximate filtering via discrete dual processes," Stochastic Processes and their Applications, Elsevier, vol. 168(C).
    10. Bjarki Eldon, 2023. "Viability Selection at Linked Sites," Mathematics, MDPI, vol. 11(3), pages 1-23, January.
    11. Mikula, Lynette Caitlin & Vogl, Claus, 2024. "The expected sample allele frequencies from populations of changing size via orthogonal polynomials," Theoretical Population Biology, Elsevier, vol. 157(C), pages 55-85.
    12. Hobolth, Asger & Rivas-González, Iker & Bladt, Mogens & Futschik, Andreas, 2024. "Phase-type distributions in mathematical population genetics: An emerging framework," Theoretical Population Biology, Elsevier, vol. 157(C), pages 14-32.
    13. Huillet, Thierry & Möhle, Martin, 2013. "On the extended Moran model and its relation to coalescents with multiple collisions," Theoretical Population Biology, Elsevier, vol. 87(C), pages 5-14.
    14. Vogl, Claus & Clemente, Florian, 2012. "The allele-frequency spectrum in a decoupled Moran model with mutation, drift, and directional selection, assuming small mutation rates," Theoretical Population Biology, Elsevier, vol. 81(3), pages 197-209.
    15. Eldon, Bjarki & Stephan, Wolfgang, 2018. "Evolution of highly fecund haploid populations," Theoretical Population Biology, Elsevier, vol. 119(C), pages 48-56.
    16. Hadzibeganovic, Tarik & Liu, Chao & Li, Rong, 2021. "Effects of reproductive skew on the evolution of ethnocentrism in structured populations with variable size," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 568(C).
    17. González Casanova, Adrián & Kurt, Noemi & Wakolbinger, Anton & Yuan, Linglong, 2016. "An individual-based model for the Lenski experiment, and the deceleration of the relative fitness," Stochastic Processes and their Applications, Elsevier, vol. 126(8), pages 2211-2252.
    18. Abraham, Romain & Delmas, Jean-François & He, Hui, 2021. "Some properties of stationary continuous state branching processes," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 309-343.
    19. Lenz, Ute & Kluth, Sandra & Baake, Ellen & Wakolbinger, Anton, 2015. "Looking down in the ancestral selection graph: A probabilistic approach to the common ancestor type distribution," Theoretical Population Biology, Elsevier, vol. 103(C), pages 27-37.
    20. Paul F. Slade, 2018. "Linearization of the Kingman Coalescent," Mathematics, MDPI, vol. 6(5), pages 1-27, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:156:y:2024:i:c:p:103-116. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.