IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v157y2024icp55-85.html
   My bibliography  Save this article

The expected sample allele frequencies from populations of changing size via orthogonal polynomials

Author

Listed:
  • Mikula, Lynette Caitlin
  • Vogl, Claus

Abstract

In this article, discrete and stochastic changes in (effective) population size are incorporated into the spectral representation of a biallelic diffusion process for drift and small mutation rates. A forward algorithm inspired by Hidden-Markov-Model (HMM) literature is used to compute exact sample allele frequency spectra for three demographic scenarios: single changes in (effective) population size, boom-bust dynamics, and stochastic fluctuations in (effective) population size. An approach for fully agnostic demographic inference from these sample allele spectra is explored, and sufficient statistics for stepwise changes in population size are found. Further, convergence behaviours of the polymorphic sample spectra for population size changes on different time scales are examined and discussed within the context of inference of the effective population size. Joint visual assessment of the sample spectra and the temporal coefficients of the spectral decomposition of the forward diffusion process is found to be important in determining departure from equilibrium. Stochastic changes in (effective) population size are shown to shape sample spectra particularly strongly.

Suggested Citation

  • Mikula, Lynette Caitlin & Vogl, Claus, 2024. "The expected sample allele frequencies from populations of changing size via orthogonal polynomials," Theoretical Population Biology, Elsevier, vol. 157(C), pages 55-85.
  • Handle: RePEc:eee:thpobi:v:157:y:2024:i:c:p:55-85
    DOI: 10.1016/j.tpb.2024.03.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580924000339
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2024.03.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vogl, Claus & Mikula, Lynette Caitlin, 2021. "A nearly-neutral biallelic Moran model with biased mutation and linear and quadratic selection," Theoretical Population Biology, Elsevier, vol. 139(C), pages 1-17.
    2. Burden, Conrad J. & Tang, Yurong, 2017. "Rate matrix estimation from site frequency data," Theoretical Population Biology, Elsevier, vol. 113(C), pages 23-33.
    3. Steinrücken, Matthias & Wang, Y.X. Rachel & Song, Yun S., 2013. "An explicit transition density expansion for a multi-allelic Wright–Fisher diffusion with general diploid selection," Theoretical Population Biology, Elsevier, vol. 83(C), pages 1-14.
    4. Vogl, Claus & Mikula, Lynette C. & Burden, Conrad J., 2020. "Maximum likelihood estimators for scaled mutation rates in an equilibrium mutation–drift model," Theoretical Population Biology, Elsevier, vol. 134(C), pages 106-118.
    5. Lukić, Sergio & Hey, Jody & Chen, Kevin, 2011. "Non-equilibrium allele frequency spectra via spectral methods," Theoretical Population Biology, Elsevier, vol. 79(4), pages 203-219.
    6. Myers, Simon & Fefferman, Charles & Patterson, Nick, 2008. "Can one learn history from the allelic spectrum?," Theoretical Population Biology, Elsevier, vol. 73(3), pages 342-348.
    7. Hobolth, Asger & Siri-Jégousse, Arno & Bladt, Mogens, 2019. "Phase-type distributions in population genetics," Theoretical Population Biology, Elsevier, vol. 127(C), pages 16-32.
    8. Vogl, Claus, 2014. "Estimating the scaled mutation rate and mutation bias with site frequency data," Theoretical Population Biology, Elsevier, vol. 98(C), pages 19-27.
    9. Živković, Daniel & Stephan, Wolfgang, 2011. "Analytical results on the neutral non-equilibrium allele frequency spectrum based on diffusion theory," Theoretical Population Biology, Elsevier, vol. 79(4), pages 184-191.
    10. Vogl, Claus & Bergman, Juraj, 2015. "Inference of directional selection and mutation parameters assuming equilibrium," Theoretical Population Biology, Elsevier, vol. 106(C), pages 71-82.
    11. Matthew Stephens & Peter Donnelly, 2000. "Inference in molecular population genetics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(4), pages 605-635.
    12. Vogl, Claus & Clemente, Florian, 2012. "The allele-frequency spectrum in a decoupled Moran model with mutation, drift, and directional selection, assuming small mutation rates," Theoretical Population Biology, Elsevier, vol. 81(3), pages 197-209.
    13. Etheridge, A.M. & Griffiths, R.C., 2009. "A coalescent dual process in a Moran model with genic selection," Theoretical Population Biology, Elsevier, vol. 75(4), pages 320-330.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vogl, Claus & Mikula, Lynette C. & Burden, Conrad J., 2020. "Maximum likelihood estimators for scaled mutation rates in an equilibrium mutation–drift model," Theoretical Population Biology, Elsevier, vol. 134(C), pages 106-118.
    2. Vogl, Claus & Mikula, Lynette Caitlin, 2021. "A nearly-neutral biallelic Moran model with biased mutation and linear and quadratic selection," Theoretical Population Biology, Elsevier, vol. 139(C), pages 1-17.
    3. Schrempf, Dominik & Hobolth, Asger, 2017. "An alternative derivation of the stationary distribution of the multivariate neutral Wright–Fisher model for low mutation rates with a view to mutation rate estimation from site frequency data," Theoretical Population Biology, Elsevier, vol. 114(C), pages 88-94.
    4. Vogl, Claus & Bergman, Juraj, 2015. "Inference of directional selection and mutation parameters assuming equilibrium," Theoretical Population Biology, Elsevier, vol. 106(C), pages 71-82.
    5. Burden, Conrad J. & Tang, Yurong, 2017. "Rate matrix estimation from site frequency data," Theoretical Population Biology, Elsevier, vol. 113(C), pages 23-33.
    6. Legried, Brandon & Terhorst, Jonathan, 2022. "Rates of convergence in the two-island and isolation-with-migration models," Theoretical Population Biology, Elsevier, vol. 147(C), pages 16-27.
    7. Steinrücken, Matthias & Wang, Y.X. Rachel & Song, Yun S., 2013. "An explicit transition density expansion for a multi-allelic Wright–Fisher diffusion with general diploid selection," Theoretical Population Biology, Elsevier, vol. 83(C), pages 1-14.
    8. Malaguti, Giulia & Singh, Param Priya & Isambert, Hervé, 2014. "On the retention of gene duplicates prone to dominant deleterious mutations," Theoretical Population Biology, Elsevier, vol. 93(C), pages 38-51.
    9. Blath, Jochen & Buzzoni, Eugenio & Koskela, Jere & Wilke Berenguer, Maite, 2020. "Statistical tools for seed bank detection," Theoretical Population Biology, Elsevier, vol. 132(C), pages 1-15.
    10. Burden, Conrad J. & Tang, Yurong, 2016. "An approximate stationary solution for multi-allele neutral diffusion with low mutation rates," Theoretical Population Biology, Elsevier, vol. 112(C), pages 22-32.
    11. Baharian, Soheil & Gravel, Simon, 2018. "On the decidability of population size histories from finite allele frequency spectra," Theoretical Population Biology, Elsevier, vol. 120(C), pages 42-51.
    12. Steinrücken, Matthias & Paul, Joshua S. & Song, Yun S., 2013. "A sequentially Markov conditional sampling distribution for structured populations with migration and recombination," Theoretical Population Biology, Elsevier, vol. 87(C), pages 51-61.
    13. Jüri Lember & Chris Watkins, 2022. "An Evolutionary Model that Satisfies Detailed Balance," Methodology and Computing in Applied Probability, Springer, vol. 24(1), pages 1-37, March.
    14. Johndrow, James E. & Palacios, Julia A., 2019. "Exact limits of inference in coalescent models," Theoretical Population Biology, Elsevier, vol. 125(C), pages 75-93.
    15. Kim, Junhyong & Mossel, Elchanan & Rácz, Miklós Z. & Ross, Nathan, 2015. "Can one hear the shape of a population history?," Theoretical Population Biology, Elsevier, vol. 100(C), pages 26-38.
    16. Burden, Conrad J. & Griffiths, Robert C., 2018. "Stationary distribution of a 2-island 2-allele Wright–Fisher diffusion model with slow mutation and migration rates," Theoretical Population Biology, Elsevier, vol. 124(C), pages 70-80.
    17. Riccardo De Bin & Vegard Grødem Stikbakke, 2023. "A boosting first-hitting-time model for survival analysis in high-dimensional settings," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(2), pages 420-440, April.
    18. Chen, Hua, 2012. "The joint allele frequency spectrum of multiple populations: A coalescent theory approach," Theoretical Population Biology, Elsevier, vol. 81(2), pages 179-195.
    19. Hobolth, Asger & Rivas-González, Iker & Bladt, Mogens & Futschik, Andreas, 2024. "Phase-type distributions in mathematical population genetics: An emerging framework," Theoretical Population Biology, Elsevier, vol. 157(C), pages 14-32.
    20. Vogl, Claus & Clemente, Florian, 2012. "The allele-frequency spectrum in a decoupled Moran model with mutation, drift, and directional selection, assuming small mutation rates," Theoretical Population Biology, Elsevier, vol. 81(3), pages 197-209.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:157:y:2024:i:c:p:55-85. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/intelligence .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.