IDEAS home Printed from https://ideas.repec.org/a/eee/thpobi/v159y2024icp91-107.html
   My bibliography  Save this article

The ancestral selection graph for a Λ-asymmetric Moran model

Author

Listed:
  • González Casanova, Adrián
  • Kurt, Noemi
  • Pérez, José Luis

Abstract

Motivated by the question of the impact of selective advantage in populations with skewed reproduction mechanisms, we study a Moran model with selection. We assume that there are two types of individuals, where the reproductive success of one type is larger than the other. The higher reproductive success may stem from either more frequent reproduction, or from larger numbers of offspring, and is encoded in a measure Λ for each of the two types. Λ-reproduction here means that a whole fraction of the population is replaced at a reproductive event. Our approach consists of constructing a Λ-asymmetric Moran model in which individuals of the two populations compete, rather than considering a Moran model for each population. Provided the measure are ordered stochastically, we can couple them. This allows us to construct the central object of this paper, the Λ−asymmetric ancestral selection graph, leading to a pathwise duality of the forward in time Λ-asymmetric Moran model with its ancestral process. We apply the ancestral selection graph in order to obtain scaling limits of the forward and backward processes, and note that the frequency process converges to the solution of an SDE with discontinuous paths. Finally, we derive a Griffiths representation for the generator of the SDE and use it to find a semi-explicit formula for the probability of fixation of the less beneficial of the two types.

Suggested Citation

  • González Casanova, Adrián & Kurt, Noemi & Pérez, José Luis, 2024. "The ancestral selection graph for a Λ-asymmetric Moran model," Theoretical Population Biology, Elsevier, vol. 159(C), pages 91-107.
  • Handle: RePEc:eee:thpobi:v:159:y:2024:i:c:p:91-107
    DOI: 10.1016/j.tpb.2024.02.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0040580924000194
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tpb.2024.02.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baake, E. & Esercito, L. & Hummel, S., 2023. "Lines of descent in a Moran model with frequency-dependent selection and mutation," Stochastic Processes and their Applications, Elsevier, vol. 160(C), pages 409-457.
    2. Fu, Zongfei & Li, Zenghu, 2010. "Stochastic equations of non-negative processes with jumps," Stochastic Processes and their Applications, Elsevier, vol. 120(3), pages 306-330, March.
    3. Bah, B. & Pardoux, E., 2015. "The Λ-lookdown model with selection," Stochastic Processes and their Applications, Elsevier, vol. 125(3), pages 1089-1126.
    4. González Casanova, Adrián & Kurt, Noemi & Wakolbinger, Anton & Yuan, Linglong, 2016. "An individual-based model for the Lenski experiment, and the deceleration of the relative fitness," Stochastic Processes and their Applications, Elsevier, vol. 126(8), pages 2211-2252.
    5. Kluth, Sandra & Baake, Ellen, 2013. "The Moran model with selection: Fixation probabilities, ancestral lines, and an alternative particle representation," Theoretical Population Biology, Elsevier, vol. 90(C), pages 104-112.
    6. Pokalyuk, Cornelia & Pfaffelhuber, Peter, 2013. "The ancestral selection graph under strong directional selection," Theoretical Population Biology, Elsevier, vol. 87(C), pages 25-33.
    7. Etheridge, Alison M. & Griffiths, Robert C. & Taylor, Jesse E., 2010. "A coalescent dual process in a Moran model with genic selection, and the lambda coalescent limit," Theoretical Population Biology, Elsevier, vol. 78(2), pages 77-92.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cordero, Fernando, 2017. "Common ancestor type distribution: A Moran model and its deterministic limit," Stochastic Processes and their Applications, Elsevier, vol. 127(2), pages 590-621.
    2. González Casanova, Adrián & Miró Pina, Verónica & Pardo, Juan Carlos, 2020. "The Wright–Fisher model with efficiency," Theoretical Population Biology, Elsevier, vol. 132(C), pages 33-46.
    3. Bjarki Eldon, 2023. "Viability Selection at Linked Sites," Mathematics, MDPI, vol. 11(3), pages 1-23, January.
    4. Long, Hongwei & Ma, Chunhua & Shimizu, Yasutaka, 2017. "Least squares estimators for stochastic differential equations driven by small Lévy noises," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1475-1495.
    5. Ying Jiao & Chunhua Ma & Simone Scotti & Chao Zhou, 2018. "The Alpha-Heston Stochastic Volatility Model," Papers 1812.01914, arXiv.org.
    6. Matyas Barczy & Mohamed Ben Alaya & Ahmed Kebaier & Gyula Pap, 2016. "Asymptotic properties of maximum likelihood estimator for the growth rate for a jump-type CIR process based on continuous time observations," Papers 1609.05865, arXiv.org, revised Aug 2017.
    7. Friesen, Martin & Jin, Peng & Rüdiger, Barbara, 2020. "Existence of densities for multi-type continuous-state branching processes with immigration," Stochastic Processes and their Applications, Elsevier, vol. 130(9), pages 5426-5452.
    8. Grosjean, Nicolas & Huillet, Thierry, 2016. "Deterministic versus stochastic aspects of superexponential population growth models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 455(C), pages 27-37.
    9. Fontana, Claudio & Gnoatto, Alessandro & Szulda, Guillaume, 2023. "CBI-time-changed Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 163(C), pages 323-349.
    10. Micha{l} Barski & Rafa{l} {L}ochowski, 2024. "Affine term structure models driven by independent L\'evy processes," Papers 2402.07503, arXiv.org.
    11. Matyas Barczy & Mohamed Ben Alaya & Ahmed Kebaier & Gyula Pap, 2017. "Asymptotic properties of maximum likelihood estimator for the growth rate of a stable CIR process based on continuous time observations," Papers 1711.02140, arXiv.org, revised Feb 2019.
    12. Ying Jiao & Chunhua Ma & Simone Scotti, 2017. "Alpha-CIR Model with Branching Processes in Sovereign Interest Rate Modelling," Post-Print hal-01275397, HAL.
    13. Ascione, Giacomo & Mehrdoust, Farshid & Orlando, Giuseppe & Samimi, Oldouz, 2023. "Foreign Exchange Options on Heston-CIR Model Under Lévy Process Framework," Applied Mathematics and Computation, Elsevier, vol. 446(C).
    14. Desai, Michael M. & Nicolaisen, Lauren E. & Walczak, Aleksandra M. & Plotkin, Joshua B., 2012. "The structure of allelic diversity in the presence of purifying selection," Theoretical Population Biology, Elsevier, vol. 81(2), pages 144-157.
    15. Ying Jiao & Chunhua Ma & Simone Scotti, 2016. "Alpha-CIR Model with Branching Processes in Sovereign Interest Rate Modelling," Working Papers hal-01275397, HAL.
    16. Malaguti, Giulia & Singh, Param Priya & Isambert, Hervé, 2014. "On the retention of gene duplicates prone to dominant deleterious mutations," Theoretical Population Biology, Elsevier, vol. 93(C), pages 38-51.
    17. Li, Zenghu & Xu, Wei, 2018. "Asymptotic results for exponential functionals of Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 128(1), pages 108-131.
    18. Frikha, Noufel & Li, Libo, 2021. "Well-posedness and approximation of some one-dimensional Lévy-driven non-linear SDEs," Stochastic Processes and their Applications, Elsevier, vol. 132(C), pages 76-107.
    19. Li, Pei-Sen, 2019. "A continuous-state polynomial branching process," Stochastic Processes and their Applications, Elsevier, vol. 129(8), pages 2941-2967.
    20. Bossert, S. & Pfaffelhuber, P., 2018. "The fixation probability and time for a doubly beneficial mutant," Stochastic Processes and their Applications, Elsevier, vol. 128(12), pages 4018-4050.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:thpobi:v:159:y:2024:i:c:p:91-107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.sciencedirect.com/journal/theoretical-population-biology .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.